An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an...An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials.展开更多
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha...Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).展开更多
Three different Cu-Zr-Co alloys, namely Cu40Zr37.5Co22.5, Cu42.5Zr45Co12.5 and Cu49Zr49Co2, were obtained by rapid cooling. The microstructure and phase formation of as-cast rods with diameters of 2 mm are compared wi...Three different Cu-Zr-Co alloys, namely Cu40Zr37.5Co22.5, Cu42.5Zr45Co12.5 and Cu49Zr49Co2, were obtained by rapid cooling. The microstructure and phase formation of as-cast rods with diameters of 2 mm are compared with those of the respective ingots. An increasing Co content stabilises the B2 CuZr phase and leads to the precipitation of a ternary Cu-Zr-Co phase. The variation of the cooling rate affects the size of the B2 dendrites as well as the volume fraction and the morphology of the interdendritic phases. The mechanical properties were determined in compression and all alloys show a certain plastic deformability despite the presence of several binary and ternary intermetallic phases. The deformation mechanisms are discussed on the basis of the microstructures and the constituent phases.展开更多
Multiphase CrMnFeCoNi high-entropy alloys(HEAs)were prepared by a powder metallurgy process com-bining mechanical alloying(MA)and vacuum hot-pressing sintering(HPS).The single-phase face-centered cubic(FCC)HEA powder ...Multiphase CrMnFeCoNi high-entropy alloys(HEAs)were prepared by a powder metallurgy process com-bining mechanical alloying(MA)and vacuum hot-pressing sintering(HPS).The single-phase face-centered cubic(FCC)HEA powder prepared by MA was sintered into a bulk HEA specimen containing FCC phase matrix along with precipitated M 23 C 6 phase and nanoscaleσphase particles.When the sintering temper-ature was 1223 K,the ultimate strength reaches 1300±11.6 MPa,and the elongation exceeds 4%±0.6%.Microstructural characterization reveals that the formation of nanoscale particles and deformation twins play critical roles in improving the strain hardening(SH)ability.Prolonging the MA time promoted the formation of the precipitated phase and enhanced the SH ability by increasing the number of precip-itated particles.The SH capacity increases significantly with increasing sintering temperature,which is attributed to a significant enhancement in the twinning capacity due to grain growth and the reduced number ofσphase particles.Through systematic studies,the planar glide of dislocations was found to be the main mode of deformation,while deformation twinning appeared as an auxiliary deformation mode when the twinning stress was reached.Although the formation of precipitates leads to grain bound-ary and precipitation strengthening effects,crack initiation is more prominent owing to increased grain boundary brittleness around the precipitated M 23 C 6 phase.The prominence of crack initiation is a contra-diction that must be reconciled with regard to precipitation strengthening.This work serves as a useful reference for the preparation of high-strength HEA parts by powder metallurgy.展开更多
By modifying the cooling rate, a Cu50Zr45Ti5 alloy with various structures was developed. A fully glassy rod and specimens with different sizes and volume fractions ofnanocrystals were produced. The relationship betwe...By modifying the cooling rate, a Cu50Zr45Ti5 alloy with various structures was developed. A fully glassy rod and specimens with different sizes and volume fractions ofnanocrystals were produced. The relationship between the structure and mechanical properties of the Cu50Zr45Ti5 alloy was investigated. The different structures result in a transition of the deformation mechanism from being dominated by shear banding to being governed by dislocation action accompanied by shear band formation. These different plastic deformation mechanisms were discussed in the framework of self-organized critical behavior.展开更多
基金supported by the Shenzhen Peacock Innovation Project(KQJSCX20170327150948772,KQJSCX20170727101223535,and KQJSCX20170327151307811)the Key Project Fund for Science and Technology Development of Guangdong Province(2017B090911014)+1 种基金support was provided by the European Research Council(ERC)under the ERC Advanced Grant INTELHYB(ERC-2013-ADG-340025)the National Natural Science Foundation of China(51771123)。
文摘An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials.
基金Project(2020A1515110869)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,China+3 种基金Project(51775351)supported by the National Natural Science Foundation of ChinaProject(2019011)supported by the NTUT-SZU Joint Research Program,ChinaProject(2019040)supported by the Natural Science Foundation of SZU,ChinaProject(ASTRA6-6)supported by the European Regional Development Fund,European Union。
文摘Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).
基金the financial support by CNPq, Brazil, and DAAD, Germany
文摘Three different Cu-Zr-Co alloys, namely Cu40Zr37.5Co22.5, Cu42.5Zr45Co12.5 and Cu49Zr49Co2, were obtained by rapid cooling. The microstructure and phase formation of as-cast rods with diameters of 2 mm are compared with those of the respective ingots. An increasing Co content stabilises the B2 CuZr phase and leads to the precipitation of a ternary Cu-Zr-Co phase. The variation of the cooling rate affects the size of the B2 dendrites as well as the volume fraction and the morphology of the interdendritic phases. The mechanical properties were determined in compression and all alloys show a certain plastic deformability despite the presence of several binary and ternary intermetallic phases. The deformation mechanisms are discussed on the basis of the microstructures and the constituent phases.
基金supported by the National Natu-ral Science Foundation of China(Nos.52061021,51861016,and 51871132)the Science and Technology Major Project of Yun-nan Province(Nos.202202AG050004,202002AB080001)+2 种基金the Young and Middle-Aged Academic and Technical Leaders Reserve Talent Project(No.202005AC160039)support by the Ministry of Science and Higher Educa-tion of the Russian Federation in the framework of the Increase Competitiveness Program of NUST«MISiS»(No.K2-2020-046)financial support from the China Scholarship Council(CSC,No.201906220226).
文摘Multiphase CrMnFeCoNi high-entropy alloys(HEAs)were prepared by a powder metallurgy process com-bining mechanical alloying(MA)and vacuum hot-pressing sintering(HPS).The single-phase face-centered cubic(FCC)HEA powder prepared by MA was sintered into a bulk HEA specimen containing FCC phase matrix along with precipitated M 23 C 6 phase and nanoscaleσphase particles.When the sintering temper-ature was 1223 K,the ultimate strength reaches 1300±11.6 MPa,and the elongation exceeds 4%±0.6%.Microstructural characterization reveals that the formation of nanoscale particles and deformation twins play critical roles in improving the strain hardening(SH)ability.Prolonging the MA time promoted the formation of the precipitated phase and enhanced the SH ability by increasing the number of precip-itated particles.The SH capacity increases significantly with increasing sintering temperature,which is attributed to a significant enhancement in the twinning capacity due to grain growth and the reduced number ofσphase particles.Through systematic studies,the planar glide of dislocations was found to be the main mode of deformation,while deformation twinning appeared as an auxiliary deformation mode when the twinning stress was reached.Although the formation of precipitates leads to grain bound-ary and precipitation strengthening effects,crack initiation is more prominent owing to increased grain boundary brittleness around the precipitated M 23 C 6 phase.The prominence of crack initiation is a contra-diction that must be reconciled with regard to precipitation strengthening.This work serves as a useful reference for the preparation of high-strength HEA parts by powder metallurgy.
基金the Alexander von Humboldt Foundation for financial supportsupported by the National Natural Science Foundation of China (Nos. 51171098 and 51222102)+2 种基金the Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ090)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe 085 project in Shanghai University
文摘By modifying the cooling rate, a Cu50Zr45Ti5 alloy with various structures was developed. A fully glassy rod and specimens with different sizes and volume fractions ofnanocrystals were produced. The relationship between the structure and mechanical properties of the Cu50Zr45Ti5 alloy was investigated. The different structures result in a transition of the deformation mechanism from being dominated by shear banding to being governed by dislocation action accompanied by shear band formation. These different plastic deformation mechanisms were discussed in the framework of self-organized critical behavior.