An experiment of impact between 450 m/s water jets and polymethylme- thacrylate (PMMA) materials with complex surface geometry was conducted. The testing surfaces were a corner, step change, surface-breaking notch, in...An experiment of impact between 450 m/s water jets and polymethylme- thacrylate (PMMA) materials with complex surface geometry was conducted. The testing surfaces were a corner, step change, surface-breaking notch, inclined surface, etc. Stress waves propagation in the solid such as reflection, interference and diffraction was observed using polarized optics and an Imacon high speed camera (operating at both of 106 and 5×105 framing rates per second, fps). A damage test by the impact of the side jetting of an 850 m/s water jet was also carried out. It was found that stress waves propagation in solids depends not only on the surface geometry but also on the contact situation between liquid and solid. It was shown that the side jetting has sufficient damage potential although its head may consist of finer droplets. The results of this paper are useful to further analyze the dynamic stress state of solids under high-speed liquid impact.展开更多
The first hydrodynamic instability growth measurements with three-dimensional(3D) surface-roughness modulations were performed on CH shell spherical implosions at the National Ignition Facility(NIF) [G. H. Miller, E. ...The first hydrodynamic instability growth measurements with three-dimensional(3D) surface-roughness modulations were performed on CH shell spherical implosions at the National Ignition Facility(NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841(2004)]. The initial capsule outer-surface amplitudes were increased approximately four times, compared with the standard specifications, to increase the signal-to-noise ratio, helping to qualify a technique for measuring small 3D modulations. The instability growth measurements were performed using x-ray through-foil radiography based on time-resolved pinhole imaging. Averaging over 15 similar images significantly increased the signal-to-noise ratio, making possible a comparison with 3D simulations. At a convergence ratio of~2.4, the measured modulation levels were~3 times larger than those simulated based on the growth of the known imposed initial surface modulations. Several hypotheses are discussed, including increased instability growth due to modulations of the oxygen content in the bulk of the capsule. Future experiments will be focused on measurements with standard 3D ‘nativeroughness' capsules as well as with deliberately imposed oxygen modulations.展开更多
文摘An experiment of impact between 450 m/s water jets and polymethylme- thacrylate (PMMA) materials with complex surface geometry was conducted. The testing surfaces were a corner, step change, surface-breaking notch, inclined surface, etc. Stress waves propagation in the solid such as reflection, interference and diffraction was observed using polarized optics and an Imacon high speed camera (operating at both of 106 and 5×105 framing rates per second, fps). A damage test by the impact of the side jetting of an 850 m/s water jet was also carried out. It was found that stress waves propagation in solids depends not only on the surface geometry but also on the contact situation between liquid and solid. It was shown that the side jetting has sufficient damage potential although its head may consist of finer droplets. The results of this paper are useful to further analyze the dynamic stress state of solids under high-speed liquid impact.
基金performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
文摘The first hydrodynamic instability growth measurements with three-dimensional(3D) surface-roughness modulations were performed on CH shell spherical implosions at the National Ignition Facility(NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841(2004)]. The initial capsule outer-surface amplitudes were increased approximately four times, compared with the standard specifications, to increase the signal-to-noise ratio, helping to qualify a technique for measuring small 3D modulations. The instability growth measurements were performed using x-ray through-foil radiography based on time-resolved pinhole imaging. Averaging over 15 similar images significantly increased the signal-to-noise ratio, making possible a comparison with 3D simulations. At a convergence ratio of~2.4, the measured modulation levels were~3 times larger than those simulated based on the growth of the known imposed initial surface modulations. Several hypotheses are discussed, including increased instability growth due to modulations of the oxygen content in the bulk of the capsule. Future experiments will be focused on measurements with standard 3D ‘nativeroughness' capsules as well as with deliberately imposed oxygen modulations.