A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated sil...A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50575123 and 50730007)China Scholarship Council (CSC) and German Research Foundation (DFG)
文摘A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.