期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A theoretical study of the role of K on the reverse water-gas shift reaction on Hägg carbide
1
作者 Xianxuan Ren Rozemarijn D.E.Krösschell +3 位作者 Zhuowu Men Peng Wang ivo a.w.filot Emiel J.M.Hensen 《Chinese Journal of Catalysis》 2025年第5期289-300,共12页
Potassium(K)is known to enhance the catalytic performance of Fe-based catalysts in the reverse water-gas shift(rWGS)reaction,which is highly relevant during Fischer-Tropsch(FT)synthesis of CO_(2)-H_(2) mixtures.To elu... Potassium(K)is known to enhance the catalytic performance of Fe-based catalysts in the reverse water-gas shift(rWGS)reaction,which is highly relevant during Fischer-Tropsch(FT)synthesis of CO_(2)-H_(2) mixtures.To elucidate the mechanistic role of K promoter,we employed density functional theory(DFT)calculations in conjunction with microkinetic modelling for two representative surface terminations of Hägg carbide(χ-Fe_(5)C_(2)),i.e.,(010)and(510).K_(2)O results in stronger adsorption of CO_(2)and H_(2) on Hägg carbide and promotes C–O bond dissociation of adsorbed CO_(2)by increasing the electron density on Fe atoms close to the promoter oxide.The increased electron density of the surface Fe atoms results in an increased electron-electron repulsion with bonding orbitals of adsorbed CO_(2).Microkinetics simulations predict that K_(2)O increases the CO_(2)conversion during CO_(2)-FT synthesis.K_(2)O also enhances CO adsorption and dissociation,facilitating the formation of methane,used here as a proxy for hydrocarbons formation during CO_(2)-FT synthesis.CO dissociation and O removal via H_(2)O compete as the rate-controlling steps in CO_(2)-FT. 展开更多
关键词 Fischer-Tropsch synthesis Hägg carbide Reverse water-gas shift Potassium Density functional theory
在线阅读 下载PDF
Unveiling the Au-Mn-Cu synergy in Au/LaMnCuO_(3)catalysts for selective ethanol oxidation
2
作者 Jie Wang Lulu Chen +3 位作者 Lijun Yue ivo a.w.filot Emiel J.M.Hensen Peng Liu 《Chinese Journal of Catalysis》 2025年第8期34-48,共15页
Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exc... Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exceeding 90%and a space-time yield of 715 g_(AC)g_(AU)^(-1)h^(-1)at 225℃,outperforming reported catalysts.The outstanding performance is attributed to adjacent Cu^(+)and Mn^(2+)ions in the perovskite surface,which,together with nearby AuNPs,contribute to the high activity and stability.The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite.Doping too much Cu into the perovskite leads to metallic Cu,suppressing catalyst performance.Density functional theory(reaction energetics,electronic structure analysis)and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs.The reaction involves two H abstraction steps:(1)O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and(2)α-C-H cleavage by AuNPs,yielding AC and adsorbed water.Molecular O_(2)adsorbs in the oxygen vacancy(O_(V))formed by water removal,generating a peroxide anion(O_(2)^(2-))as the activated oxygen species.In the second part of the catalytic cycle,the basic O_(2)^(2-)species abstracts the H atom from another ethanol molecule,followed byα-C-H cleavage by AuNPs,AC production,and water removal.Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO_(3)and Au/LaMnCuO_(3)models.Moderate Cu doping enhances the essential Cu^(+)-OV-Mn^(2+)sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond.In contrast,excessive Cu doping creates unstable Cu^(2+)-O-Cu^(2+)sites and shifts the barrier to theα-C-H cleavage. 展开更多
关键词 Ethanol oxidation ACETALDEHYDE Gold catalyst LaMnO_(3)perovskite Copper doping
在线阅读 下载PDF
金属掺杂SnO_(2)电化学还原CO_(2)制甲酸的计算研究 被引量:1
3
作者 刘赵春 宗雪 +2 位作者 Dionisios G.Vlachos ivo a.w.filot Emiel J.M.Hensen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第7期249-259,共11页
CO_(2)电化学还原为甲酸(HCOOH)作为可再生氢的液体载体,有助于可再生能源的转变.本文使用密度泛函理论和微观动力学模拟研究了SnO_(2)电极上CO_(2)高效催化还原为HCOOH的要求.表面羟基化是实现高活性的先决条件,预测的电流密度与实验... CO_(2)电化学还原为甲酸(HCOOH)作为可再生氢的液体载体,有助于可再生能源的转变.本文使用密度泛函理论和微观动力学模拟研究了SnO_(2)电极上CO_(2)高效催化还原为HCOOH的要求.表面羟基化是实现高活性的先决条件,预测的电流密度与实验值的趋势相同.所得到的羟基化表面对HCOOH的产生具有高选择性,析氢反应的贡献可以忽略不计.机理研究结果表明,反应首先将吸附的CO_(2)加氢为羧酸盐(COOH),然后进一步加氢获得所需产物.通过采用常用元素(Bi,Pd,Ni和Cu)对表面进行掺杂,确定Bi掺杂可以显著提高电流密度.根据该机理中的两个关键步骤建立了Br?nsted-Evans-Polanyi关系.总之,羧酸盐的形成是速率控制步骤.将两个质子化步骤的自由能作为两个描述符,分析了CO_(2)还原活性,结果表明Bi掺杂SnO_(2)电极具有最高活性. 展开更多
关键词 CO_(2)还原 甲酸 SnO_(2) 助剂 密度泛函理论
在线阅读 下载PDF
Stability of heterogeneous single-atom catalysts:a scaling law mapping thermodynamics to kinetics 被引量:3
4
作者 Ya-Qiong Su Long Zhang +6 位作者 Yifan Wang Jin-Xun Liu Valery Muravev Konstantinos Alexopoulos ivo a.w.filot Dionisios G.Vlachos Emiel J.M.Hensen 《npj Computational Materials》 SCIE EI CSCD 2020年第1期460-466,共7页
Heterogeneous single-atom catalysts(SACs)hold the promise of combining high catalytic performance with maximum utilization of often precious metals.We extend the current thermodynamic view of SAC stability in terms of... Heterogeneous single-atom catalysts(SACs)hold the promise of combining high catalytic performance with maximum utilization of often precious metals.We extend the current thermodynamic view of SAC stability in terms of the binding energy(E_(bind))of singlemetal atoms on a support to a kinetic(transport)one by considering the activation barrier for metal atom diffusion.A rapid computational screening approach allows predicting diffusion barriers for metal-support pairs based on Ebind of a metal atom to the support and the cohesive energy of the bulk metal(E_(c)). 展开更多
关键词 KINETICS THERMODYNAMICS SCALING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部