Potassium(K)is known to enhance the catalytic performance of Fe-based catalysts in the reverse water-gas shift(rWGS)reaction,which is highly relevant during Fischer-Tropsch(FT)synthesis of CO_(2)-H_(2) mixtures.To elu...Potassium(K)is known to enhance the catalytic performance of Fe-based catalysts in the reverse water-gas shift(rWGS)reaction,which is highly relevant during Fischer-Tropsch(FT)synthesis of CO_(2)-H_(2) mixtures.To elucidate the mechanistic role of K promoter,we employed density functional theory(DFT)calculations in conjunction with microkinetic modelling for two representative surface terminations of Hägg carbide(χ-Fe_(5)C_(2)),i.e.,(010)and(510).K_(2)O results in stronger adsorption of CO_(2)and H_(2) on Hägg carbide and promotes C–O bond dissociation of adsorbed CO_(2)by increasing the electron density on Fe atoms close to the promoter oxide.The increased electron density of the surface Fe atoms results in an increased electron-electron repulsion with bonding orbitals of adsorbed CO_(2).Microkinetics simulations predict that K_(2)O increases the CO_(2)conversion during CO_(2)-FT synthesis.K_(2)O also enhances CO adsorption and dissociation,facilitating the formation of methane,used here as a proxy for hydrocarbons formation during CO_(2)-FT synthesis.CO dissociation and O removal via H_(2)O compete as the rate-controlling steps in CO_(2)-FT.展开更多
Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exc...Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exceeding 90%and a space-time yield of 715 g_(AC)g_(AU)^(-1)h^(-1)at 225℃,outperforming reported catalysts.The outstanding performance is attributed to adjacent Cu^(+)and Mn^(2+)ions in the perovskite surface,which,together with nearby AuNPs,contribute to the high activity and stability.The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite.Doping too much Cu into the perovskite leads to metallic Cu,suppressing catalyst performance.Density functional theory(reaction energetics,electronic structure analysis)and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs.The reaction involves two H abstraction steps:(1)O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and(2)α-C-H cleavage by AuNPs,yielding AC and adsorbed water.Molecular O_(2)adsorbs in the oxygen vacancy(O_(V))formed by water removal,generating a peroxide anion(O_(2)^(2-))as the activated oxygen species.In the second part of the catalytic cycle,the basic O_(2)^(2-)species abstracts the H atom from another ethanol molecule,followed byα-C-H cleavage by AuNPs,AC production,and water removal.Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO_(3)and Au/LaMnCuO_(3)models.Moderate Cu doping enhances the essential Cu^(+)-OV-Mn^(2+)sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond.In contrast,excessive Cu doping creates unstable Cu^(2+)-O-Cu^(2+)sites and shifts the barrier to theα-C-H cleavage.展开更多
Heterogeneous single-atom catalysts(SACs)hold the promise of combining high catalytic performance with maximum utilization of often precious metals.We extend the current thermodynamic view of SAC stability in terms of...Heterogeneous single-atom catalysts(SACs)hold the promise of combining high catalytic performance with maximum utilization of often precious metals.We extend the current thermodynamic view of SAC stability in terms of the binding energy(E_(bind))of singlemetal atoms on a support to a kinetic(transport)one by considering the activation barrier for metal atom diffusion.A rapid computational screening approach allows predicting diffusion barriers for metal-support pairs based on Ebind of a metal atom to the support and the cohesive energy of the bulk metal(E_(c)).展开更多
文摘Potassium(K)is known to enhance the catalytic performance of Fe-based catalysts in the reverse water-gas shift(rWGS)reaction,which is highly relevant during Fischer-Tropsch(FT)synthesis of CO_(2)-H_(2) mixtures.To elucidate the mechanistic role of K promoter,we employed density functional theory(DFT)calculations in conjunction with microkinetic modelling for two representative surface terminations of Hägg carbide(χ-Fe_(5)C_(2)),i.e.,(010)and(510).K_(2)O results in stronger adsorption of CO_(2)and H_(2) on Hägg carbide and promotes C–O bond dissociation of adsorbed CO_(2)by increasing the electron density on Fe atoms close to the promoter oxide.The increased electron density of the surface Fe atoms results in an increased electron-electron repulsion with bonding orbitals of adsorbed CO_(2).Microkinetics simulations predict that K_(2)O increases the CO_(2)conversion during CO_(2)-FT synthesis.K_(2)O also enhances CO adsorption and dissociation,facilitating the formation of methane,used here as a proxy for hydrocarbons formation during CO_(2)-FT synthesis.CO dissociation and O removal via H_(2)O compete as the rate-controlling steps in CO_(2)-FT.
文摘Gold nanoparticles(AuNPs)supported on the Cu-doped LaMnO_(3)perovskites exhibit strong Au-Mn-Cu synergy in the aerobic oxidation of gaseous ethanol to acetaldehyde(AC).The Au/LaMnCuO_(3)catalysts achieve AC yields exceeding 90%and a space-time yield of 715 g_(AC)g_(AU)^(-1)h^(-1)at 225℃,outperforming reported catalysts.The outstanding performance is attributed to adjacent Cu^(+)and Mn^(2+)ions in the perovskite surface,which,together with nearby AuNPs,contribute to the high activity and stability.The best-performing catalyst contains a Cu/Mn ratio of 1/3 in the perovskite.Doping too much Cu into the perovskite leads to metallic Cu,suppressing catalyst performance.Density functional theory(reaction energetics,electronic structure analysis)and microkinetics simulations aided in understanding the synergy between Cu and Mn and the role of AuNPs.The reaction involves two H abstraction steps:(1)O-H cleavage of adsorbed ethanol by the basic perovskite lattice oxygen atom and(2)α-C-H cleavage by AuNPs,yielding AC and adsorbed water.Molecular O_(2)adsorbs in the oxygen vacancy(O_(V))formed by water removal,generating a peroxide anion(O_(2)^(2-))as the activated oxygen species.In the second part of the catalytic cycle,the basic O_(2)^(2-)species abstracts the H atom from another ethanol molecule,followed byα-C-H cleavage by AuNPs,AC production,and water removal.Water formation in the second part of the catalytic cycle is the rate-controlling step for Au/LaMnO_(3)and Au/LaMnCuO_(3)models.Moderate Cu doping enhances the essential Cu^(+)-OV-Mn^(2+)sites and lowers the barrier for water formation due to the weaker Cu-O bond than the Mn-O bond.In contrast,excessive Cu doping creates unstable Cu^(2+)-O-Cu^(2+)sites and shifts the barrier to theα-C-H cleavage.
基金This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 686086(Partial-PGMs)Y.W.,K.A.,and D.G.V.acknowledge support by the RAPID manufacturing institute,supported by the Department of Energy(DOE)Advanced Manufacturing Office(AMO),award number DE-EE0007888-9.5.
文摘Heterogeneous single-atom catalysts(SACs)hold the promise of combining high catalytic performance with maximum utilization of often precious metals.We extend the current thermodynamic view of SAC stability in terms of the binding energy(E_(bind))of singlemetal atoms on a support to a kinetic(transport)one by considering the activation barrier for metal atom diffusion.A rapid computational screening approach allows predicting diffusion barriers for metal-support pairs based on Ebind of a metal atom to the support and the cohesive energy of the bulk metal(E_(c)).