Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity t...Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity to imperfections,and transmission loss.We propose and experimentally demonstrate onchip integration and miniaturization of topological devices,which may address many existing drawbacks of the terahertz technology.We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems.We demonstrate valleylocked asymmetric energy flow and mode conversion with topological waveguide,multiport couplers,wave division,and whispering gallery mode resonators.Our devices are based on topological membrane metasurfaces,which are of great importance for developing on-chip photonics and bring many features into terahertz technology.展开更多
MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanow...MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanowires via controlled oxide-assisted chemical vapor deposition and observed a characteristic signature of skyrmion magnetic ordering in the MnSi nanowires. The thickness of the SiO2 layer on the Si substrate plays the key role in obtaining a high yield of B20 MnSi skyrmion nanowires. A growth mechanism was proposed that is consistent with the existence of an optimum SiO2 thickness. A growth phase diagram was constructed based on the extensive studies of various growth conditions for various MnSi nanostructures. The persistence of both the helicoidal and skyrmion magnetic ordering in the one-dimensional wires was directly revealed by ac and dc magnetic measurements.展开更多
基金supported by the Australian Research Council(Grant Nos.DP200101168 and DP210101292)。
文摘Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity to imperfections,and transmission loss.We propose and experimentally demonstrate onchip integration and miniaturization of topological devices,which may address many existing drawbacks of the terahertz technology.We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems.We demonstrate valleylocked asymmetric energy flow and mode conversion with topological waveguide,multiport couplers,wave division,and whispering gallery mode resonators.Our devices are based on topological membrane metasurfaces,which are of great importance for developing on-chip photonics and bring many features into terahertz technology.
文摘MnSi in the B20 structure is a prototypical helimagnet that forms a skyrmion lattice, a vortex-like spin texture under applied magnetic field. We have systematically explored the synthesis of single crystal MnSi nanowires via controlled oxide-assisted chemical vapor deposition and observed a characteristic signature of skyrmion magnetic ordering in the MnSi nanowires. The thickness of the SiO2 layer on the Si substrate plays the key role in obtaining a high yield of B20 MnSi skyrmion nanowires. A growth mechanism was proposed that is consistent with the existence of an optimum SiO2 thickness. A growth phase diagram was constructed based on the extensive studies of various growth conditions for various MnSi nanostructures. The persistence of both the helicoidal and skyrmion magnetic ordering in the one-dimensional wires was directly revealed by ac and dc magnetic measurements.