An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransv...An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransverse size of the droplet exceeds the cell thickness.The viscosities of the droplet and the surrounding liquid are comparable.Relevant effort is provided to design and test an experimental setup and validate a protocol for determining the mass transfer rate of a solute in a two-liquid system.In particular,fluorescent dye Rhodamine B is considered as the solute.A critical comparison of the situations with and without oscillation is implemented.A procedure is introduced and validated to determine the molecular and effective diffusion coefficients through evaluation of the growth of the diffusion zone width over time.It is shown that,in the presence of the liquid oscillations,there is a significant increase in the width of the zone in which Rhodamine B is present compared to the reference case with no oscillations.The oscillatory flow leads to an intensification of the solute diffusion due to intense time-averaged flows inside the droplet and the surrounding liquid and oscillations of the drop itself.Thestudy is of significant practical interest with particular relevance to typical processes for liquid-liquid extraction.展开更多
The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generati...The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.展开更多
基金supported by the Russian Science Foundation(Grant No.23-11-00242).
文摘An experimental study of the diffusive mass transfer between a droplet and an oscillating immiscible liquid in a horizontal axisymmetricHele-Shaw cell is carried out.Theliquid oscillates radially in the cell.Thetransverse size of the droplet exceeds the cell thickness.The viscosities of the droplet and the surrounding liquid are comparable.Relevant effort is provided to design and test an experimental setup and validate a protocol for determining the mass transfer rate of a solute in a two-liquid system.In particular,fluorescent dye Rhodamine B is considered as the solute.A critical comparison of the situations with and without oscillation is implemented.A procedure is introduced and validated to determine the molecular and effective diffusion coefficients through evaluation of the growth of the diffusion zone width over time.It is shown that,in the presence of the liquid oscillations,there is a significant increase in the width of the zone in which Rhodamine B is present compared to the reference case with no oscillations.The oscillatory flow leads to an intensification of the solute diffusion due to intense time-averaged flows inside the droplet and the surrounding liquid and oscillations of the drop itself.Thestudy is of significant practical interest with particular relevance to typical processes for liquid-liquid extraction.
文摘The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.