期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Transfer Learning Approach for Robust Hand Detection
1
作者 Stevica Cvetkovic Nemanja Savic ivan ciric 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期967-979,共13页
Human hand detection in uncontrolled environments is a challenging visual recognition task due to numerous variations of hand poses and background image clutter.To achieve highly accurate results as well as provide re... Human hand detection in uncontrolled environments is a challenging visual recognition task due to numerous variations of hand poses and background image clutter.To achieve highly accurate results as well as provide real-time execution,we proposed a deep transfer learning approach over the state-of-the-art deep learning object detector.Our method,denoted as YOLOHANDS,is built on top of the You Only Look Once(YOLO)deep learning architecture,which is modified to adapt to the single class hand detection task.The model transfer is performed by modifying the higher convolutional layers including the last fully connected layer,while initializing lower non-modified layers with the generic pre-trained weights.To address robustness issues,we introduced a comprehensive augmentation procedure over the training image dataset,specifically adapted for the hand detection problem.Experimental evaluation of the proposed method,which is performed on a challenging public dataset,has demonstrated highly accurate results,comparable to the state-of-the-art methods. 展开更多
关键词 Deep learning model object detection hand detection transfer learning data augmentation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部