Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the result...Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the results of our dual path DOAS measurements recently conducted in Chiba City, Japan, using xenon flashlights equipped on tall constructions as aviation obstruction lights. Because of the proximity of the southern DOAS path to an industrial area, it is found that the level of air pollution generally increases with the dominance of westerly winds, from the plausible source area to the observation light path. This situation is consistent with the result of wind lidar measurement covering a sector of ±28? with the observation range of approximately 2.8 km. In spite of the fact that the two DOAS paths, having path lengths of 5.5 and 3.5 km each, are located in separated regions of Chiba City, the observed temporal behavior was similar for both nitrogen dioxide and aerosol, though the southern path tends to exhibit slightly higher pollution levels than the northern counterpart. Additionally it is confirmed that size information of aerosol particles can be derived from the DOAS data through the analysis of the wavelength dependence of the aerosol optical thickness, which shows fairly good correlation with the mass ratio between PM2.5 and suspended particulate matter (SPM) obtained from the in-situ sampling station measurement. Thus, the DOAS approach can also be utilized for obtaining information on PM2.5 that is considered to be more harmful to human health than SPM.展开更多
Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an...Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an accurate nationwide vegetation physiognomic map by using automated machine learning approach with the support of reference data. A time-series of the multi-spectral and multi-indices data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) were exploited along with the land-surface slope data. Reliable reference data of the vegetation physiognomic types were prepared by refining the existing vegetation survey data available in the country. The Random Forests based mapping framework adopted in the research showed high performance (Overall accuracy = 0.82, Kappa coefficient = 0.79) using 148 optimum number of features out of 231 featured used. A nationwide vegetation physiognomic map of year 2013 was produced in the research. The resulted map was compared to the existing MODIS Land Cover Type (MCD12Q1) product of year 2013. A huge difference was found between two maps. Validation with the reference data showed that the MCD12Q1 product did not work satisfactorily in Japan. The outcome of the research highlights the possibility of improving the accuracy of the MCD12Q1 product with special focus on reference data.展开更多
Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tok...Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tokyo. The purpose of these sampling measurements has been to issue warning on the hazardous air pollution to the local residents. Therefore, the resulting data do not provide direct information on pollution levels inside the restricted areas where high concentration of SO2 still takes place frequently. From the ecological point of view, it is desirable to have pollution data covering wider regions of the island. In this paper we report on our differential optical absorption spectroscopy (DOAS) measurements carried out inside the highly-polluted, restricted areas in Miyakejima in December 2009 and September 2010. The system is based on continuous light emitted from a xenon light sources, while detector setups consisting of a telescope and a compact spectrometer detect the light after passing a nearly horizontal optical path of460 m-1300 m. By virtue of the portability of the DOAS observation systems, we achieved the measurement of the concentrations inside the restricted districts in the eastern and southwestern parts of the island. The DOAS results in both of these districts revealed the occurrence of pollution of volcanic gas even when no pollution was observed at nearby sampling stations. In addition, simultaneous measurements with two nearly orthogonal DOAS paths were conducted for examining the spatial distribution of the volcanic gas over the spatial range of several hundred meters. The result of this two paths measurement has indicated the importance of orography, in addition to the wind speed and wind direction, in determining the spatial concentration of SO2 emitted from the volcano crater.展开更多
文摘Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the results of our dual path DOAS measurements recently conducted in Chiba City, Japan, using xenon flashlights equipped on tall constructions as aviation obstruction lights. Because of the proximity of the southern DOAS path to an industrial area, it is found that the level of air pollution generally increases with the dominance of westerly winds, from the plausible source area to the observation light path. This situation is consistent with the result of wind lidar measurement covering a sector of ±28? with the observation range of approximately 2.8 km. In spite of the fact that the two DOAS paths, having path lengths of 5.5 and 3.5 km each, are located in separated regions of Chiba City, the observed temporal behavior was similar for both nitrogen dioxide and aerosol, though the southern path tends to exhibit slightly higher pollution levels than the northern counterpart. Additionally it is confirmed that size information of aerosol particles can be derived from the DOAS data through the analysis of the wavelength dependence of the aerosol optical thickness, which shows fairly good correlation with the mass ratio between PM2.5 and suspended particulate matter (SPM) obtained from the in-situ sampling station measurement. Thus, the DOAS approach can also be utilized for obtaining information on PM2.5 that is considered to be more harmful to human health than SPM.
文摘Irrespective of several attempts to land use/cover mapping at local, regional, or global scales, mapping of vegetation physiognomic types is limited and challenging. The main objective of the research is to produce an accurate nationwide vegetation physiognomic map by using automated machine learning approach with the support of reference data. A time-series of the multi-spectral and multi-indices data derived from Moderate Resolution Imaging Spectroradiometer (MODIS) were exploited along with the land-surface slope data. Reliable reference data of the vegetation physiognomic types were prepared by refining the existing vegetation survey data available in the country. The Random Forests based mapping framework adopted in the research showed high performance (Overall accuracy = 0.82, Kappa coefficient = 0.79) using 148 optimum number of features out of 231 featured used. A nationwide vegetation physiognomic map of year 2013 was produced in the research. The resulted map was compared to the existing MODIS Land Cover Type (MCD12Q1) product of year 2013. A huge difference was found between two maps. Validation with the reference data showed that the MCD12Q1 product did not work satisfactorily in Japan. The outcome of the research highlights the possibility of improving the accuracy of the MCD12Q1 product with special focus on reference data.
文摘Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tokyo. The purpose of these sampling measurements has been to issue warning on the hazardous air pollution to the local residents. Therefore, the resulting data do not provide direct information on pollution levels inside the restricted areas where high concentration of SO2 still takes place frequently. From the ecological point of view, it is desirable to have pollution data covering wider regions of the island. In this paper we report on our differential optical absorption spectroscopy (DOAS) measurements carried out inside the highly-polluted, restricted areas in Miyakejima in December 2009 and September 2010. The system is based on continuous light emitted from a xenon light sources, while detector setups consisting of a telescope and a compact spectrometer detect the light after passing a nearly horizontal optical path of460 m-1300 m. By virtue of the portability of the DOAS observation systems, we achieved the measurement of the concentrations inside the restricted districts in the eastern and southwestern parts of the island. The DOAS results in both of these districts revealed the occurrence of pollution of volcanic gas even when no pollution was observed at nearby sampling stations. In addition, simultaneous measurements with two nearly orthogonal DOAS paths were conducted for examining the spatial distribution of the volcanic gas over the spatial range of several hundred meters. The result of this two paths measurement has indicated the importance of orography, in addition to the wind speed and wind direction, in determining the spatial concentration of SO2 emitted from the volcano crater.