The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,...The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,device operations,and patterns of user behavior.Such data plays an essential role in criminal inves-tigations,highlighting the growing importance of specialized smart home forensics.Given the rapid advancement in smart home software and hardware technologies,many companies are introducing new devices and services that expand the market.Consequently,scalable and platform-specific forensic research is necessary to support efficient digital investigations across diverse smart home ecosystems.This study thoroughly examines the core components and structures of smart homes,proposing a generalized architecture that represents various operational environments.A three-stage smart home forensics framework is introduced:(1)analyzing application functions to infer relevant data,(2)extracting and processing data from interconnected devices,and(3)identifying data valuable for investigative purposes.The framework’s applicability is validated using testbeds from Samsung SmartThings and Xiaomi Mi Home platforms,offering practical insights for real-world forensic applications.The results demonstrate that the proposed forensic framework effectively acquires and classifies relevant digital evidence in smart home platforms,confirming its practical applicability in smart home forensic investigations.展开更多
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter...Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.展开更多
文摘The smart home platform integrates with Internet of Things(IoT)devices,smartphones,and cloud servers,enabling seamless and convenient services.It gathers and manages extensive user data,including personal information,device operations,and patterns of user behavior.Such data plays an essential role in criminal inves-tigations,highlighting the growing importance of specialized smart home forensics.Given the rapid advancement in smart home software and hardware technologies,many companies are introducing new devices and services that expand the market.Consequently,scalable and platform-specific forensic research is necessary to support efficient digital investigations across diverse smart home ecosystems.This study thoroughly examines the core components and structures of smart homes,proposing a generalized architecture that represents various operational environments.A three-stage smart home forensics framework is introduced:(1)analyzing application functions to infer relevant data,(2)extracting and processing data from interconnected devices,and(3)identifying data valuable for investigative purposes.The framework’s applicability is validated using testbeds from Samsung SmartThings and Xiaomi Mi Home platforms,offering practical insights for real-world forensic applications.The results demonstrate that the proposed forensic framework effectively acquires and classifies relevant digital evidence in smart home platforms,confirming its practical applicability in smart home forensic investigations.
基金supported by the BK21 FOUR project funded by the Ministry of Education,Korea(4199990113966).
文摘Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.