期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Assessment of organic carbon stock and labile carbon in soils of the Gataaya Oasis,Tunisia
1
作者 Noura BCHATNIA Manel ALLANI +3 位作者 Hatem IBRAHIM ines bouzriba Mohamed Amine MAAOUI Nadhem BRAHIM 《Journal of Arid Land》 2025年第11期1576-1589,共14页
Oasis soils in Tunisia are characterized by low soil organic carbon(SOC)stocks,primarily due to their coarse texture and intensive irrigation practices.In the Gataaya Oasis,soils receive 3.000 to 4.000 L/m^(2) annuall... Oasis soils in Tunisia are characterized by low soil organic carbon(SOC)stocks,primarily due to their coarse texture and intensive irrigation practices.In the Gataaya Oasis,soils receive 3.000 to 4.000 L/m^(2) annually through submersion irrigation,leading to a rapid decline in SOC stocks.Despite their sandy texture,which promotes good water infiltration,these soils are enriched with clay,dissolved materials,and fertilizers in deeper horizons.This study aimed to assess SOC content in the Gataaya Oasis soils,investigate the transport of labile carbon in drainage water,and clarify the destiny of this transported carbon.Soil samples were collected systematically at three depths(0–10,10–20,and 20–30 cm),focusing on the top 30 cm depth,which is most affected by amendments.Two sampling points(P1 and P2)were selected,i.e.,P1 profile near the trunk of date palms(with manure input)and P2 profile between two adjacent date palms(without manure input).Water samples were collected from drainage systems within the oasis(W1,W2,and W3)and outside the oasis(W4).A laboratory experiment simulating manure application and irrigation was conducted to complement field observations.Physical-chemical analyses revealed a significant decrease in SOC stocks with soil depths.In P1 profile,SOC stocks declined from 17.71 t/hm^(2) at the 0–10 cm depth to 7.80 t/hm^(2) at the 20–30 cm depth.In P2 profile,SOC stocks were lower,decreasing from 6.73 t/hm^(2) at the 0–10 cm depth to 3.57 t/hm^(2) at the 20–30 cm depth.Labile carbon content in drainage water increased outside the oasis,with chemical oxygen demand(COD)values rising from 73 mg/L in W1 water sample to 290 mg/L in W4 water sample,indicating cumulative leaching effects from surrounding oases.The laboratory experiment confirmed field observations,showing a decline in soil organic matter(SOM)content from 3.27%to 2.62%after 12 irrigations,highlighting the vulnerability of SOC stocks to intensive irrigation.This study underscores the low SOC stocks in the Gataaya Oasis soils and their rapid depletion under successive irrigations.The findings provide insights into the dynamics of labile carbon transport and its contribution to regional carbon cycling,offering valuable information for sustainable soil management and ecological protection in arid ecosystems. 展开更多
关键词 arid soil carbon cycling IRRIGATION LEACHING soil physical-chemical characteristics
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部