Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA v...Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.展开更多
Sargassum vulgare C. Agardh shows androgynous receptacles, each bearing on an average 12 unisexual conceptacles which open outside by ostiole, and wherein gametangia (antheridia or oogonia) lie interspersed with parap...Sargassum vulgare C. Agardh shows androgynous receptacles, each bearing on an average 12 unisexual conceptacles which open outside by ostiole, and wherein gametangia (antheridia or oogonia) lie interspersed with paraphyses. Since out-put of eggs is extremely low, 4 - 6 per female conceptacle, Sargassum sp. ensures its survival under all eco-physiological conditions. The released oogonium is “wrapped” in sulphated polysaccharide-rich wall layer known to provide protection against desiccation. Oogonia after being “extruded” out of ostiole, are “incubated” on receptacle, where they grow into eggs that are easily contacted by spermatozoids. Gamete release is synchronous and almost simultaneous ensuring high rates of fertilization. The release occurs on days falling near a full moon or new moon, during low tides when conceptacles lie exposed. Gamete release occurs first from upper conceptacles, which “house” mature gametangia while lower ones are still developing. This results in gamete release over an extended period of time. The zygote dispersal and propagule recruitment also show adaptations selectively advantageous for the alga.展开更多
基金Indo-Swiss Joint research Program (ISJRP)#17/2011
文摘Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.
文摘Sargassum vulgare C. Agardh shows androgynous receptacles, each bearing on an average 12 unisexual conceptacles which open outside by ostiole, and wherein gametangia (antheridia or oogonia) lie interspersed with paraphyses. Since out-put of eggs is extremely low, 4 - 6 per female conceptacle, Sargassum sp. ensures its survival under all eco-physiological conditions. The released oogonium is “wrapped” in sulphated polysaccharide-rich wall layer known to provide protection against desiccation. Oogonia after being “extruded” out of ostiole, are “incubated” on receptacle, where they grow into eggs that are easily contacted by spermatozoids. Gamete release is synchronous and almost simultaneous ensuring high rates of fertilization. The release occurs on days falling near a full moon or new moon, during low tides when conceptacles lie exposed. Gamete release occurs first from upper conceptacles, which “house” mature gametangia while lower ones are still developing. This results in gamete release over an extended period of time. The zygote dispersal and propagule recruitment also show adaptations selectively advantageous for the alga.