Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense in...Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense into user-relevant information,yet conventional signal processing methods struggle with the massive scale,noise,and artificial sensory systems characteristics of data generated by artificial sensory devices.Integrating artificial intelligence(AI)is essential for addressing these challenges and enhancing the performance of artificial sensory systems,making it a rapidly growing area of research in recent years.However,no studies have systematically categorized the output functions of these systems or analyzed the associated AI algorithms and data processing methods.In this review,we present a systematic overview of the latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems replicating the five human senses:touch,taste,vision,smell,and hearing.We categorize the AI-enabled capabilities of artificial sensory systems into four key areas:cognitive simulation,perceptual enhancement,adaptive adjustment,and early warning.We introduce specialized AI algorithms and raw data processing methods for each function,designed to enhance and optimize sensing performance.Finally,we offer a perspective on the future of AI-integrated artificial sensory systems,highlighting technical challenges and potential real-world application scenarios for further innovation.Integration of AI with artificial sensory systems will enable advanced multimodal perception,real-time learning,and predictive capabilities.This will drive precise environmental adaptation and personalized feedback,ultimately positioning these systems as foundational technologies in smart healthcare,agriculture,and automation.展开更多
Background: Dietary nucleotides, considered as antibiotics alternative, were shown to have positive effects on intestinal hyperaemia, systemic immunity, small-intestinal growth, and hepatic composition in pigs. Howev...Background: Dietary nucleotides, considered as antibiotics alternative, were shown to have positive effects on intestinal hyperaemia, systemic immunity, small-intestinal growth, and hepatic composition in pigs. However, there is no previous research on nucleotide supplementation in weanling pigs under an oral challenged E. coil K88. Therefore, 2 experiments were conducted to investigate the effects of dietary nucleotides on weanling pig growth performance, nutrient digestibility, fecal score, and blood profile after being orally challenged with E. coli K88. Methods: In Exp. 1, a total of 140 weanling pigs [8.33 ± 0.33 kg of body weight (BW), 28-d old] were used in this 42-d feeding trial. Pigs were distributed into 1 of 4 treatments, 5 pigs/pen (3 barrows and 2 gilts) and 7 pens/treatment. Treatments were a control basal diet (CON) or the CON supplemented with 150 (R150), 220 (R220), or 275 (R275) mg/kg to give the three treatment diets. In Exp. 2, 28 weanling pigs (BW = 8.40 ± 0.22 kg, 28-d old) were distributed into 1 of 4 treatments to give 1 pig/pen and 7 pens/treatment in a 42-d feeding and challenge trial. Dietary treatments were the same as in Exp. 1. 0n d 14, all those pigs (BW= 13.3±0.15 kg, 42-d old) were orally dosed with 1.5 mL suspension containing 10 cfu/mL of E. coli K88. Twenty four hours after challenge, blood and excreta samples were collected from each pigs for analysis. Fecal scores were measured on d 7, 14, 21, and 28 of the study. Results: In Exp. 1, overall BW, average daily gain (ADG), gain/feed (G/F) ratio, and nutrient digestibilities were lower (P 〈 0.05) in CON group compared with the nucleotides fed pigs. In Exp. 2, after challenge, IgA, IgM, and IGF-I were higher (P〈 0.05) in the nucleotide groups compared with CON. However, the nucleotide groups had lower (P 〈 0.05) cortisol and TNF-o compared with CON. Fecal E. coil counts and fecal score for the nucleotide groups were lower (P 〈 0.05) than for CON. Conclusions: In conclusion, dietary nucleotides supplementation could improve growth performance, nutrient digestibility, immune status, microbial balance, reduce diarrhea, and provide protection against enterotoxigenic E. coli K88 infection in weanling pigs.展开更多
基金supported by the National Research Foundation(NRF)grant funded by the Korean government(MSIT)(RS-2023-00211580,RS-2023-00237308).
文摘Artificial sensory systems mimic the five human senses to facilitate data interaction between the real and virtual worlds.Accurate data analysis is crucial for converting external stimuli from each artificial sense into user-relevant information,yet conventional signal processing methods struggle with the massive scale,noise,and artificial sensory systems characteristics of data generated by artificial sensory devices.Integrating artificial intelligence(AI)is essential for addressing these challenges and enhancing the performance of artificial sensory systems,making it a rapidly growing area of research in recent years.However,no studies have systematically categorized the output functions of these systems or analyzed the associated AI algorithms and data processing methods.In this review,we present a systematic overview of the latest AI techniques aimed at enhancing the cognitive capabilities of artificial sensory systems replicating the five human senses:touch,taste,vision,smell,and hearing.We categorize the AI-enabled capabilities of artificial sensory systems into four key areas:cognitive simulation,perceptual enhancement,adaptive adjustment,and early warning.We introduce specialized AI algorithms and raw data processing methods for each function,designed to enhance and optimize sensing performance.Finally,we offer a perspective on the future of AI-integrated artificial sensory systems,highlighting technical challenges and potential real-world application scenarios for further innovation.Integration of AI with artificial sensory systems will enable advanced multimodal perception,real-time learning,and predictive capabilities.This will drive precise environmental adaptation and personalized feedback,ultimately positioning these systems as foundational technologies in smart healthcare,agriculture,and automation.
基金supported by Department of Animal Resource & Science,Dankook University
文摘Background: Dietary nucleotides, considered as antibiotics alternative, were shown to have positive effects on intestinal hyperaemia, systemic immunity, small-intestinal growth, and hepatic composition in pigs. However, there is no previous research on nucleotide supplementation in weanling pigs under an oral challenged E. coil K88. Therefore, 2 experiments were conducted to investigate the effects of dietary nucleotides on weanling pig growth performance, nutrient digestibility, fecal score, and blood profile after being orally challenged with E. coli K88. Methods: In Exp. 1, a total of 140 weanling pigs [8.33 ± 0.33 kg of body weight (BW), 28-d old] were used in this 42-d feeding trial. Pigs were distributed into 1 of 4 treatments, 5 pigs/pen (3 barrows and 2 gilts) and 7 pens/treatment. Treatments were a control basal diet (CON) or the CON supplemented with 150 (R150), 220 (R220), or 275 (R275) mg/kg to give the three treatment diets. In Exp. 2, 28 weanling pigs (BW = 8.40 ± 0.22 kg, 28-d old) were distributed into 1 of 4 treatments to give 1 pig/pen and 7 pens/treatment in a 42-d feeding and challenge trial. Dietary treatments were the same as in Exp. 1. 0n d 14, all those pigs (BW= 13.3±0.15 kg, 42-d old) were orally dosed with 1.5 mL suspension containing 10 cfu/mL of E. coli K88. Twenty four hours after challenge, blood and excreta samples were collected from each pigs for analysis. Fecal scores were measured on d 7, 14, 21, and 28 of the study. Results: In Exp. 1, overall BW, average daily gain (ADG), gain/feed (G/F) ratio, and nutrient digestibilities were lower (P 〈 0.05) in CON group compared with the nucleotides fed pigs. In Exp. 2, after challenge, IgA, IgM, and IGF-I were higher (P〈 0.05) in the nucleotide groups compared with CON. However, the nucleotide groups had lower (P 〈 0.05) cortisol and TNF-o compared with CON. Fecal E. coil counts and fecal score for the nucleotide groups were lower (P 〈 0.05) than for CON. Conclusions: In conclusion, dietary nucleotides supplementation could improve growth performance, nutrient digestibility, immune status, microbial balance, reduce diarrhea, and provide protection against enterotoxigenic E. coli K88 infection in weanling pigs.