This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments,built upon a novel,syntheticmulti-vector dataset g...This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments,built upon a novel,syntheticmulti-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling.The proposed model is based on the XGBoost algorithm,optimized with Principal Component Analysis for dimensionality reduction,utilizing lightweight flowlevel features extracted from Open Flow statistics to classify attacks across critical IoT protocols including TCP,UDP,HTTP,MQTT,and CoAP.The model employs lightweight flow-level features extracted from Open Flow statistics to ensure low computational overhead and fast processing.Performance was rigorously evaluated using key metrics,including Accuracy,Precision,Recall,F1-Score,False Alarm Rate,AUC-ROC,and Detection Time.Experimental results demonstrate the model’s high performance,achieving an accuracy of 98.93%and a low FAR of 0.86%,with a rapid median detection time of 1.02 s.This efficiency validates its superiority in meeting critical Key Performance Indicators,such as Latency and high Throughput,necessary for time-sensitive SDN-IoT systems.Furthermore,the model’s robustness and statistically significant outperformance against baseline models such as Random Forest,k-Nearest Neighbors,and Gradient Boosting Machine,validating through statistical tests using Wilcoxon signed-rank test and confirmed via successful deployment in a real SDN testbed for live traffic detection and mitigation.展开更多
文摘This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments,built upon a novel,syntheticmulti-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling.The proposed model is based on the XGBoost algorithm,optimized with Principal Component Analysis for dimensionality reduction,utilizing lightweight flowlevel features extracted from Open Flow statistics to classify attacks across critical IoT protocols including TCP,UDP,HTTP,MQTT,and CoAP.The model employs lightweight flow-level features extracted from Open Flow statistics to ensure low computational overhead and fast processing.Performance was rigorously evaluated using key metrics,including Accuracy,Precision,Recall,F1-Score,False Alarm Rate,AUC-ROC,and Detection Time.Experimental results demonstrate the model’s high performance,achieving an accuracy of 98.93%and a low FAR of 0.86%,with a rapid median detection time of 1.02 s.This efficiency validates its superiority in meeting critical Key Performance Indicators,such as Latency and high Throughput,necessary for time-sensitive SDN-IoT systems.Furthermore,the model’s robustness and statistically significant outperformance against baseline models such as Random Forest,k-Nearest Neighbors,and Gradient Boosting Machine,validating through statistical tests using Wilcoxon signed-rank test and confirmed via successful deployment in a real SDN testbed for live traffic detection and mitigation.