Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the result...Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the results of our dual path DOAS measurements recently conducted in Chiba City, Japan, using xenon flashlights equipped on tall constructions as aviation obstruction lights. Because of the proximity of the southern DOAS path to an industrial area, it is found that the level of air pollution generally increases with the dominance of westerly winds, from the plausible source area to the observation light path. This situation is consistent with the result of wind lidar measurement covering a sector of ±28? with the observation range of approximately 2.8 km. In spite of the fact that the two DOAS paths, having path lengths of 5.5 and 3.5 km each, are located in separated regions of Chiba City, the observed temporal behavior was similar for both nitrogen dioxide and aerosol, though the southern path tends to exhibit slightly higher pollution levels than the northern counterpart. Additionally it is confirmed that size information of aerosol particles can be derived from the DOAS data through the analysis of the wavelength dependence of the aerosol optical thickness, which shows fairly good correlation with the mass ratio between PM2.5 and suspended particulate matter (SPM) obtained from the in-situ sampling station measurement. Thus, the DOAS approach can also be utilized for obtaining information on PM2.5 that is considered to be more harmful to human health than SPM.展开更多
Urban growth has been a major issue in environmental monitoring and changes occurred on land surfaces have been monitored by applying remote sensing as well as ground measurement. Most major cities in the world have e...Urban growth has been a major issue in environmental monitoring and changes occurred on land surfaces have been monitored by applying remote sensing as well as ground measurement. Most major cities in the world have experienced land subsidence phenomena on some parts of them due to the load of development and modernization. Excessive extraction of groundwater for the needs of industry has led to the condition where the water table drops, and this can possibly trigger subsidence, as observed in Indonesian cities. In this study the authors have shown that the application of DInSAR (differential interferometric synthetic aperture radar) technique using Japanese Earth Resources Satellite-I Synthetic Aperture Radar JERS-I SAR data can reveal subsidence conditions in the studied Makassar city area. Landsat TM (thematic mapper) images were used to evaluate the change of land cover during the observation period of 1994-1999. Makassar is fiat, covered mainly by alluvium deposit that is vulnerable to the load of constructions, and volcanic formations which is porous and will easily be degraded by groundwater extraction. It is found that mostly the subsidence has occurred in the western part of the city, including the industrial district, reclamation area, trading center area and the seaport area. The ground survey has indicated that high human activity exists in every point of subsidence. It is likely that various human activities such as ground water pumping and construction work should have affected the local subsidence phenomena in Makassar, as in the case of other large-scale cities in Indonesia.展开更多
Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tok...Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tokyo. The purpose of these sampling measurements has been to issue warning on the hazardous air pollution to the local residents. Therefore, the resulting data do not provide direct information on pollution levels inside the restricted areas where high concentration of SO2 still takes place frequently. From the ecological point of view, it is desirable to have pollution data covering wider regions of the island. In this paper we report on our differential optical absorption spectroscopy (DOAS) measurements carried out inside the highly-polluted, restricted areas in Miyakejima in December 2009 and September 2010. The system is based on continuous light emitted from a xenon light sources, while detector setups consisting of a telescope and a compact spectrometer detect the light after passing a nearly horizontal optical path of460 m-1300 m. By virtue of the portability of the DOAS observation systems, we achieved the measurement of the concentrations inside the restricted districts in the eastern and southwestern parts of the island. The DOAS results in both of these districts revealed the occurrence of pollution of volcanic gas even when no pollution was observed at nearby sampling stations. In addition, simultaneous measurements with two nearly orthogonal DOAS paths were conducted for examining the spatial distribution of the volcanic gas over the spatial range of several hundred meters. The result of this two paths measurement has indicated the importance of orography, in addition to the wind speed and wind direction, in determining the spatial concentration of SO2 emitted from the volcano crater.展开更多
文摘Differential optical absorption spectroscopy (DOAS) is a useful technique for measuring nitrogen dioxide (NO2) and aerosol, the most important species in urban environmental pollution. This paper reports on the results of our dual path DOAS measurements recently conducted in Chiba City, Japan, using xenon flashlights equipped on tall constructions as aviation obstruction lights. Because of the proximity of the southern DOAS path to an industrial area, it is found that the level of air pollution generally increases with the dominance of westerly winds, from the plausible source area to the observation light path. This situation is consistent with the result of wind lidar measurement covering a sector of ±28? with the observation range of approximately 2.8 km. In spite of the fact that the two DOAS paths, having path lengths of 5.5 and 3.5 km each, are located in separated regions of Chiba City, the observed temporal behavior was similar for both nitrogen dioxide and aerosol, though the southern path tends to exhibit slightly higher pollution levels than the northern counterpart. Additionally it is confirmed that size information of aerosol particles can be derived from the DOAS data through the analysis of the wavelength dependence of the aerosol optical thickness, which shows fairly good correlation with the mass ratio between PM2.5 and suspended particulate matter (SPM) obtained from the in-situ sampling station measurement. Thus, the DOAS approach can also be utilized for obtaining information on PM2.5 that is considered to be more harmful to human health than SPM.
文摘Urban growth has been a major issue in environmental monitoring and changes occurred on land surfaces have been monitored by applying remote sensing as well as ground measurement. Most major cities in the world have experienced land subsidence phenomena on some parts of them due to the load of development and modernization. Excessive extraction of groundwater for the needs of industry has led to the condition where the water table drops, and this can possibly trigger subsidence, as observed in Indonesian cities. In this study the authors have shown that the application of DInSAR (differential interferometric synthetic aperture radar) technique using Japanese Earth Resources Satellite-I Synthetic Aperture Radar JERS-I SAR data can reveal subsidence conditions in the studied Makassar city area. Landsat TM (thematic mapper) images were used to evaluate the change of land cover during the observation period of 1994-1999. Makassar is fiat, covered mainly by alluvium deposit that is vulnerable to the load of constructions, and volcanic formations which is porous and will easily be degraded by groundwater extraction. It is found that mostly the subsidence has occurred in the western part of the city, including the industrial district, reclamation area, trading center area and the seaport area. The ground survey has indicated that high human activity exists in every point of subsidence. It is likely that various human activities such as ground water pumping and construction work should have affected the local subsidence phenomena in Makassar, as in the case of other large-scale cities in Indonesia.
文摘Since the volcanic eruption in 2000, continuous monitoring of sulfur dioxide (SO2) gas has been conducted with in-situ samplers located along the seashore road in Miyakejima, a volcano island around 180 kmsouth of Tokyo. The purpose of these sampling measurements has been to issue warning on the hazardous air pollution to the local residents. Therefore, the resulting data do not provide direct information on pollution levels inside the restricted areas where high concentration of SO2 still takes place frequently. From the ecological point of view, it is desirable to have pollution data covering wider regions of the island. In this paper we report on our differential optical absorption spectroscopy (DOAS) measurements carried out inside the highly-polluted, restricted areas in Miyakejima in December 2009 and September 2010. The system is based on continuous light emitted from a xenon light sources, while detector setups consisting of a telescope and a compact spectrometer detect the light after passing a nearly horizontal optical path of460 m-1300 m. By virtue of the portability of the DOAS observation systems, we achieved the measurement of the concentrations inside the restricted districts in the eastern and southwestern parts of the island. The DOAS results in both of these districts revealed the occurrence of pollution of volcanic gas even when no pollution was observed at nearby sampling stations. In addition, simultaneous measurements with two nearly orthogonal DOAS paths were conducted for examining the spatial distribution of the volcanic gas over the spatial range of several hundred meters. The result of this two paths measurement has indicated the importance of orography, in addition to the wind speed and wind direction, in determining the spatial concentration of SO2 emitted from the volcano crater.