Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abn...Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.展开更多
In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan...In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush.展开更多
Phytic acid (Myo-inositol 1,2,3,4,5,6 hexa-kisphophate) is a storage form of phosphorus and can accumulate to the levels as high as 35% in the wheat kernel. Phytic acid acts as an inhibitor for macronutrients as well ...Phytic acid (Myo-inositol 1,2,3,4,5,6 hexa-kisphophate) is a storage form of phosphorus and can accumulate to the levels as high as 35% in the wheat kernel. Phytic acid acts as an inhibitor for macronutrients as well as micronutrients and located in the bran of wheat kernel. Due to its inhibitory role, a high concentration of phytic acid is undesirable as it hinders the bio-availability of some essential nutrients such as Fe, Mg, Ca, Zn and Cu, etc. In order to check the inheritance of phytic acid in wheat kernels, phytic acid concentration was initially determined in kernels of 10 wheat genotypes to identify two contrasting genetic groups for diallel analysis. Based on pre-screening results of 10 wheat genotypes, five wheat genotypes (3 with high and 2 with low phytic acid concentration) were crossed in all possible combinations during 2007-2008 by 5 × 5 full diallel mating fashion to insight the inheritance of phytic acid and other yield contributing traits. All 20 F1 hybrids and five parental genotypes revealed significant differences statistically, except plant maturity. The narrow and broad sense heritability estimates varied widely among traits for spike length (0.17, 0.62), spikelets spike-1 (0.35, 0.74), tillers plant-1 (0.05, 0.52) and phytic acid concentration (0.01, 0.86). The values for phytic acid concentration ranged from 0.56% to 3.43% among F1 hybrids and 1.06 to 3.67% for parental genotypes. F1 hybrids, Ps-2005 × Ghaznavi (0.56%), AUP-4006 × Ps-2004 (0.74%), Janbaz × Ps-2004 (0.89%) and Janbaz × Ps-2005 (1.01%), had the lowest concentration of phytic acid. The study concluded that F1 hybrids with low phytic acid concentration could yield desirable segregants.展开更多
Soliton molecules are fascinating phenomena in ultrafast lasers which have potential for increasing the capacity of fiber optic communication.The investigation of reliable materials will be of great benefit to the gen...Soliton molecules are fascinating phenomena in ultrafast lasers which have potential for increasing the capacity of fiber optic communication.The investigation of reliable materials will be of great benefit to the generation of soliton molecules.Herein,an all-fiber laser cavity was built incorporating carbon nanotubes-based saturable absorber.Mode-locked pulses were obtained at 1565.0 nm with a 60 dB SNR and a 4.5 W peak power.Soliton molecules were subsequently observed after increasing the pump power and tuning polarization state in the same cavity,showing variable separation of pulses between 4.87 and 25.76 ps.Furthermore,these tunable soliton molecules were verified and investigated through numerical simulation,where the tuning of pump power and polarization state were simulated.These results demonstrate that soliton molecules are promising to be applied in optical communication,where carbon nanotube-based mode-locked fiber lasers serve as a reliable platform for the generation of these soliton molecules.展开更多
Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. f...Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. furcifera to determine the association between gene methylation and sexual phenotypes using methylation-sensitive representa- tional difference analysis. After the second subtractive hybridization, four differentially methylated DNA bands were obtained and sequenced. Ten different fragments were found. One fragment from the positive hybridization was 120 bp, and highly similar to the tram- track genes from Nasonia vitripennis. Another fragment from the reverse hybridization was 414 bp, and homologous to the 28S rRNA gene of S. furcifera with a similarity rate as high as 99%. We also discussed how DNA methylation of tramtrack and 28S rRNA genes produced effects on sexual differentiation and development. These results provide potential evidence that DNA methylation of some genes may be related to sexual phenotype variations in S.furcifera and will facilitate future studies on the epigenetic mechanisms of insect sexual dimorphism.展开更多
Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care syst...Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care systems,wearables,connected vehicles,and industries.This has given rise to risks associated with the privacy and security of systems.Security issues and cyber attacks on IoT devices may potentially hinder the growth of IoT products due to deficiencies in the architecture.To counter these issues,we need to implement privacy and security right from the building blocks of IoT.The IoT architecture has evolved over the years,improving the stack of architecture with new solutions such as scalability,management,interoperability,and extensibility.This emphasizes the need to standardize and organize the IoT reference architecture in federation with privacy and security concerns.In this study,we examine and analyze 12 existing IoT reference architectures to identify their shortcomings on the basis of the requirements addressed in the standards.We propose an architecture,the privacy-federated IoT security reference architecture(PF-IoT-SRA),which interprets all the involved privacy metrics and counters major threats and attacks in the IoT communication environment.It is a step toward the standardization of the domain architecture.We effectively validate our proposed reference architecture using the architecture trade-off analysis method(ATAM),an industry-recognized scenario-based approach.展开更多
Detailed knowledge about soil characteristics and site-specific final steady infiltration rate could help to increase the irrigation water use efficiency and decrease water losses in agricultural system.The experiment...Detailed knowledge about soil characteristics and site-specific final steady infiltration rate could help to increase the irrigation water use efficiency and decrease water losses in agricultural system.The experiments were conducted on Agricultural Research Farm of Bahauddin Zakariya University,Multan,Pakistan during 2016.The cumulative infiltration depth was measured using double ring infiltrometer at selected six points of the study area.Most commonly used infiltration models such as Kostikov’s,Philip’s and Horton’s were fitted to the field infiltration data for determination of model parameters and to find the best fit model for the study area.Kostikov’s infiltration model’s parameters such as empirical constant‘c’and infiltration decay constants‘k’were obtained in the ranges of 0.140-0.290 and 0.307-0.433,respectively.Philip’s infiltration model’s parameters such as sorptivity‘S’and conductivity constant‘A’were found in the ranges of 0.167-0.288 cm/min1/2 and-0.001 to-0.009 cm/min,respectively.Similarly,the Horton’s model’s‘parameter‘k’was obtained in the range of-1.619 to-1.238.The value of infiltration capacity at onset of infiltration(fo)was obtained as 1.744 to 3.491 for all the six points.The analysis showed that the infiltration models using the estimated parameters have satisfactory prediction capability at all the selected points.Horton’s model provided the lowest mean values for RMSE(0.235)and highest mean values for ME(94%);and the lowest mean values for MPD(0.127).This indicated that infiltration can be well-described by the Horton’s model at the selected site.展开更多
基金funded by the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Hemoglobin is a vital protein in red blood cells responsible for transporting oxygen throughout the body.Its accurate measurement is crucial for diagnosing and managing conditions such as anemia and diabetes,where abnormal hemoglobin levels can indicate significant health issues.Traditional methods for hemoglobin measurement are invasive,causing pain,risk of infection,and are less convenient for frequent monitoring.PPG is a transformative technology in wearable healthcare for noninvasive monitoring and widely explored for blood pressure,sleep,blood glucose,and stress analysis.In this work,we propose a hemoglobin estimation method using an adaptive lightweight convolutional neural network(HMALCNN)from PPG.The HMALCNN is designed to capture both fine-grained local waveform characteristics and global contextual patterns,ensuring robust performance across acquisition settings.We validated our approach on two multi-regional datasets containing 152 and 68 subjects,respectively,employing a subjectindependent 5-fold cross-validation strategy.The proposed method achieved root mean square errors(RMSE)of 0.90 and 1.20 g/dL for the two datasets,with strong Pearson correlations of 0.82 and 0.72.We conducted extensive posthoc analyses to assess clinical utility and interpretability.A±1 g/dL clinical error tolerance evaluation revealed that 91.3%and 86.7%of predictions for the two datasets fell within the acceptable clinical range.Hemoglobin range-wise analysis demonstrated consistently high accuracy in the normal and low hemoglobin categories.Statistical significance testing using the Wilcoxon signed-rank test confirmed the stability of performance across validation folds(p>0.05 for both RMSE and correlation).Furthermore,model interpretability was enhanced using Gradient-weighted Class Activation Mapping(Grad-CAM),supporting the model’s clinical trustworthiness.The proposed HMALCNN offers a computationally efficient,clinically interpretable,and generalizable framework for noninvasive hemoglobin monitoring,with strong potential for integration into wearable healthcare systems as a practical alternative to invasive measurement techniques.
文摘In the frame of landslide susceptibility assessment, a spectral library was created to support the identification of materials confined to a particular region using remote sensing images. This library, called Pakistan spectral library(pklib) version 0.1, contains the analysis data of sixty rock samples taken in the Balakot region in Northern Pakistan.The spectral library is implemented as SQLite database. Structure and naming are inspired by the convention system of the ASTER Spectral Library. Usability, application and benefit of the pklib were evaluated and depicted taking two approaches, the multivariate and the spectral based. The spectral information were used to create indices. The indices were applied to Landsat and ASTER data tosupportthespatial delineation of outcropping rock sequences instratigraphic formations. The application of the indices introduced in this paper helps to identify spots where specific lithological characteristics occur. Especially in areas with sparse or missing detailed geological mapping, the spectral discrimination via remote sensing data can speed up the survey. The library can be used not only to support the improvement of factor maps for landslide susceptibility analysis, but also to provide a geoscientific basisto further analyze the lithological spotin numerous regions in the Hindu Kush.
文摘Phytic acid (Myo-inositol 1,2,3,4,5,6 hexa-kisphophate) is a storage form of phosphorus and can accumulate to the levels as high as 35% in the wheat kernel. Phytic acid acts as an inhibitor for macronutrients as well as micronutrients and located in the bran of wheat kernel. Due to its inhibitory role, a high concentration of phytic acid is undesirable as it hinders the bio-availability of some essential nutrients such as Fe, Mg, Ca, Zn and Cu, etc. In order to check the inheritance of phytic acid in wheat kernels, phytic acid concentration was initially determined in kernels of 10 wheat genotypes to identify two contrasting genetic groups for diallel analysis. Based on pre-screening results of 10 wheat genotypes, five wheat genotypes (3 with high and 2 with low phytic acid concentration) were crossed in all possible combinations during 2007-2008 by 5 × 5 full diallel mating fashion to insight the inheritance of phytic acid and other yield contributing traits. All 20 F1 hybrids and five parental genotypes revealed significant differences statistically, except plant maturity. The narrow and broad sense heritability estimates varied widely among traits for spike length (0.17, 0.62), spikelets spike-1 (0.35, 0.74), tillers plant-1 (0.05, 0.52) and phytic acid concentration (0.01, 0.86). The values for phytic acid concentration ranged from 0.56% to 3.43% among F1 hybrids and 1.06 to 3.67% for parental genotypes. F1 hybrids, Ps-2005 × Ghaznavi (0.56%), AUP-4006 × Ps-2004 (0.74%), Janbaz × Ps-2004 (0.89%) and Janbaz × Ps-2005 (1.01%), had the lowest concentration of phytic acid. The study concluded that F1 hybrids with low phytic acid concentration could yield desirable segregants.
基金supported by Beijing Natural Science Foundation(Grant Nos.1252023 and QY24141)the Aeronautical Science Foundation of China(No.2024Z073051005)+1 种基金the State Key Laboratory of Advanced Optical Communication Systems and Networks,Chinathe National College Students Innovation and Entrepreneurship Training Program.
文摘Soliton molecules are fascinating phenomena in ultrafast lasers which have potential for increasing the capacity of fiber optic communication.The investigation of reliable materials will be of great benefit to the generation of soliton molecules.Herein,an all-fiber laser cavity was built incorporating carbon nanotubes-based saturable absorber.Mode-locked pulses were obtained at 1565.0 nm with a 60 dB SNR and a 4.5 W peak power.Soliton molecules were subsequently observed after increasing the pump power and tuning polarization state in the same cavity,showing variable separation of pulses between 4.87 and 25.76 ps.Furthermore,these tunable soliton molecules were verified and investigated through numerical simulation,where the tuning of pump power and polarization state were simulated.These results demonstrate that soliton molecules are promising to be applied in optical communication,where carbon nanotube-based mode-locked fiber lasers serve as a reliable platform for the generation of these soliton molecules.
基金This research was supported by the National Nat- ural Science Foundation of China (31171844) and Natural Science Foundation of Guangdong Province ($2011010001353). We are very grateful to Dr. Min Zhang and Mrs. Wen-Jing Wu for technical assistance.
文摘Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. furcifera to determine the association between gene methylation and sexual phenotypes using methylation-sensitive representa- tional difference analysis. After the second subtractive hybridization, four differentially methylated DNA bands were obtained and sequenced. Ten different fragments were found. One fragment from the positive hybridization was 120 bp, and highly similar to the tram- track genes from Nasonia vitripennis. Another fragment from the reverse hybridization was 414 bp, and homologous to the 28S rRNA gene of S. furcifera with a similarity rate as high as 99%. We also discussed how DNA methylation of tramtrack and 28S rRNA genes produced effects on sexual differentiation and development. These results provide potential evidence that DNA methylation of some genes may be related to sexual phenotype variations in S.furcifera and will facilitate future studies on the epigenetic mechanisms of insect sexual dimorphism.
文摘Physical objects are getting connected to the Internet at an exceptional rate,making the idea of the Internet of Things(IoT)a reality.The IoT ecosystem is evident everywhere in the form of smart homes,health care systems,wearables,connected vehicles,and industries.This has given rise to risks associated with the privacy and security of systems.Security issues and cyber attacks on IoT devices may potentially hinder the growth of IoT products due to deficiencies in the architecture.To counter these issues,we need to implement privacy and security right from the building blocks of IoT.The IoT architecture has evolved over the years,improving the stack of architecture with new solutions such as scalability,management,interoperability,and extensibility.This emphasizes the need to standardize and organize the IoT reference architecture in federation with privacy and security concerns.In this study,we examine and analyze 12 existing IoT reference architectures to identify their shortcomings on the basis of the requirements addressed in the standards.We propose an architecture,the privacy-federated IoT security reference architecture(PF-IoT-SRA),which interprets all the involved privacy metrics and counters major threats and attacks in the IoT communication environment.It is a step toward the standardization of the domain architecture.We effectively validate our proposed reference architecture using the architecture trade-off analysis method(ATAM),an industry-recognized scenario-based approach.
文摘Detailed knowledge about soil characteristics and site-specific final steady infiltration rate could help to increase the irrigation water use efficiency and decrease water losses in agricultural system.The experiments were conducted on Agricultural Research Farm of Bahauddin Zakariya University,Multan,Pakistan during 2016.The cumulative infiltration depth was measured using double ring infiltrometer at selected six points of the study area.Most commonly used infiltration models such as Kostikov’s,Philip’s and Horton’s were fitted to the field infiltration data for determination of model parameters and to find the best fit model for the study area.Kostikov’s infiltration model’s parameters such as empirical constant‘c’and infiltration decay constants‘k’were obtained in the ranges of 0.140-0.290 and 0.307-0.433,respectively.Philip’s infiltration model’s parameters such as sorptivity‘S’and conductivity constant‘A’were found in the ranges of 0.167-0.288 cm/min1/2 and-0.001 to-0.009 cm/min,respectively.Similarly,the Horton’s model’s‘parameter‘k’was obtained in the range of-1.619 to-1.238.The value of infiltration capacity at onset of infiltration(fo)was obtained as 1.744 to 3.491 for all the six points.The analysis showed that the infiltration models using the estimated parameters have satisfactory prediction capability at all the selected points.Horton’s model provided the lowest mean values for RMSE(0.235)and highest mean values for ME(94%);and the lowest mean values for MPD(0.127).This indicated that infiltration can be well-described by the Horton’s model at the selected site.