This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals norm...Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals normally propagate from satellites to receivers through the ionosphere layer.The delayed signals can be used to obtain TEC values by passing through the layer.Therefore,this study aims to analyze Coseismic Ionospheric Disturbances(CIDs)in six earthquakes,including 2016 M7.8 New Zealand(about 0.49 TECU),2018 M7.9 Alaska(about 0.20 TECU),2005 M7.2 California(about 0.29 TECU),2023 M7.5 Turkey(about 0.49 TECU),2012 M8.6 Sumatra(about 2.98 TECU),and 2012 M8.2 Sumatra(about 1.49 TECU)earthquakes.The propagation speed of the wave from the earthquake epicenter,identified as an acoustic wave,was estimated to be between 0.6 and 1.0 km/s.The 3D tomography modeling was performed to analyze the TEC height variations in the ionosphere to obtain a more accurate spatial analysis of TEC due to earthquakes.Moreover,checkerboard accuracy tests were applied to test the resolution of the 3D tomography model.The maximum ionization correlation test was also conducted for the six earthquakes to determine variations in the maximum ionization height of the ionosphere.The correlation test results between magnitude and maximum CID height produced a moderate correlation.The greater the earthquake magnitude,the higher the maximum CID detected.This is because greater earthquake produces compressed energy,which reduces the ionospheric density and reaches the maximum height.In addition,the maximum CID height is higher at night than in the afternoon because the E layer disappears at night.展开更多
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金supported by the Master's Thesis Research Program of the Ministry of Education and Culture of the Republic of Indonesia,Sepuluh Nopember Institute of Technology with grant number 2002/PKS/ITS/2023 contract number 112/E5/PG.02.00.PL/2023.
文摘Ionospheric disturbances caused by acoustic waves emitted during earthquakes were studied using the Global Navigation Satellite System(GNSS)to analyze the changes in total electron content(TEC)values.GNSS signals normally propagate from satellites to receivers through the ionosphere layer.The delayed signals can be used to obtain TEC values by passing through the layer.Therefore,this study aims to analyze Coseismic Ionospheric Disturbances(CIDs)in six earthquakes,including 2016 M7.8 New Zealand(about 0.49 TECU),2018 M7.9 Alaska(about 0.20 TECU),2005 M7.2 California(about 0.29 TECU),2023 M7.5 Turkey(about 0.49 TECU),2012 M8.6 Sumatra(about 2.98 TECU),and 2012 M8.2 Sumatra(about 1.49 TECU)earthquakes.The propagation speed of the wave from the earthquake epicenter,identified as an acoustic wave,was estimated to be between 0.6 and 1.0 km/s.The 3D tomography modeling was performed to analyze the TEC height variations in the ionosphere to obtain a more accurate spatial analysis of TEC due to earthquakes.Moreover,checkerboard accuracy tests were applied to test the resolution of the 3D tomography model.The maximum ionization correlation test was also conducted for the six earthquakes to determine variations in the maximum ionization height of the ionosphere.The correlation test results between magnitude and maximum CID height produced a moderate correlation.The greater the earthquake magnitude,the higher the maximum CID detected.This is because greater earthquake produces compressed energy,which reduces the ionospheric density and reaches the maximum height.In addition,the maximum CID height is higher at night than in the afternoon because the E layer disappears at night.