A cooling trend in wintertime surface air temperature over continental Eurasia has been identified in reanalysis and the Coupled Model Inter-comparison Project phase 5(CMIP5)‘historical’simulations over the period 1...A cooling trend in wintertime surface air temperature over continental Eurasia has been identified in reanalysis and the Coupled Model Inter-comparison Project phase 5(CMIP5)‘historical’simulations over the period 1989–2009.Here the authors have shown that this cooling trend is related to changes in Arctic sea-ice around the Barents-Kara seas.This study illustrates a consistent spatial and temporal structure of the wintertime temperature variability centered over Asia using state-of-the-art reanalyses and global climate model datasets.Our findings indicate that there is a physical basis for seasonal predictions of near-surface temperatures over continental Asia based on changes to the ice-cover in the Barents-Kara seas.展开更多
Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set compr...Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.展开更多
The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main fo...The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.展开更多
基金supported by the European Research Council Advanced:Atmospheric planetary boundary layers:Physics,modelling and role in Earth system(Grant No.227915)Norwegian Research Council Projects 196178,227137 and CLIMARC
文摘A cooling trend in wintertime surface air temperature over continental Eurasia has been identified in reanalysis and the Coupled Model Inter-comparison Project phase 5(CMIP5)‘historical’simulations over the period 1989–2009.Here the authors have shown that this cooling trend is related to changes in Arctic sea-ice around the Barents-Kara seas.This study illustrates a consistent spatial and temporal structure of the wintertime temperature variability centered over Asia using state-of-the-art reanalyses and global climate model datasets.Our findings indicate that there is a physical basis for seasonal predictions of near-surface temperatures over continental Asia based on changes to the ice-cover in the Barents-Kara seas.
文摘Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.
基金the last projects of Prof.Sergej Zilitinkevich(1936-2021)The financial support was/is provided through multiple projects related to the Pan-Eurasian EXperiment(PEEX)programme including Academy of Finland projects-ClimEco(grant#314798/799)+6 种基金ACCC(grant#337549)HEATCOST(grant#334798)European Union’s Horizon 2020 Programme projects-iCUPE under ERA-PLANET(grant#689443),INTAROS(grant#727890),EXHAUSTION(grant#820655),CRiceS(grant#101003826),RI-URBANS(grant#101036245)Horizon Europe project FOCI(grant#101056783)Erasmus+Programme projects-ECOIMPACT(grant#561975-EPP-1-2015-1-FI-EPPKA2-CBHE-JP),ClimEd(grant#619285-EPP-1-2020-1-FIEPPKA2-CBHE-JP)The Norwegian Research Council INTPART educational and networking project(322317/H30):URban Sustainability in Action:Multi-disciplinary Approach through Jointly Organized Research schoolsand the EEA project(Contract No.2020TO01000219):Turbulent-resolving urban modelling of air quality and thermal comfort(TURBAN).
文摘The Pan-Eurasian Experiment Modelling Platform(PEEX-MP)is one of the key blocks of the PEEX Research Programme.The PEEX MP has more than 30 models and is directed towards seamless envir-onmental prediction.The main focus area is the Arctic-boreal regions and China.The models used in PEEX-MP cover several main components of the Earth’s system,such as the atmosphere,hydrosphere,pedosphere and biosphere,and resolve the physicalchemicalbiological processes at different spatial and temporal scales and resolutions.This paper introduces and discusses PEEX MP multi-scale modelling concept for the Earth system,online integrated,forward/inverse,and socioeconomical modelling,and other approaches with a particular focus on applications in the PEEX geographical domain.The employed high-performance com-puting facilities,capabilities,and PEEX dataflow for modelling results are described.Several virtual research platforms(PEEXView,Virtual Research Environment,Web-based Atlas)for handling PEEX modelling and observational results are introduced.The over-all approach allows us to understand better physical-chemicalbiological processes,Earth’s system interactions and feedbacks and to provide valuable information for assessment studies on evaluating risks,impact,consequences,etc.for population,envir-onment and climate in the PEEX domain.This work was also one of the last projects of Prof.Sergej Zilitinkevich,who passed away on 15 February 2021.Since the finalization took time,the paper was actually submitted in 2023 and we could not argue that the final paper text was agreed with him.