The Intemational Concordia explorer telescope (ICE-T) is a f/1.1 Schmidt telescope, 61 cm aperture, with two optical tubes equipped with identical charged coupled devices 10.3× 10.3 k, 9μ pixel size, ultra-wi...The Intemational Concordia explorer telescope (ICE-T) is a f/1.1 Schmidt telescope, 61 cm aperture, with two optical tubes equipped with identical charged coupled devices 10.3× 10.3 k, 9μ pixel size, ultra-wide-fieldwith a total FOV of 65 square degrees. Its aim is to operate at Dome C, the French-Italian Antarctic Station, taking advantage of the long winter night for continuous observations. It is optimized for high precision photometry in two separate filters Sloan g and Sloan i ranging from 100 mmag to 10 mmag (from 9 to16 mag). Among the scientific tasks there are the detection of hot Jupiters and Super Earths with the transit method, and related magnetic activity of the hosting stars. The 4m Radom dome for ICE-T together with 3 foundation pillars and the cables bundle have been already successfully installed in January 2009.展开更多
For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters ...For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.展开更多
文摘The Intemational Concordia explorer telescope (ICE-T) is a f/1.1 Schmidt telescope, 61 cm aperture, with two optical tubes equipped with identical charged coupled devices 10.3× 10.3 k, 9μ pixel size, ultra-wide-fieldwith a total FOV of 65 square degrees. Its aim is to operate at Dome C, the French-Italian Antarctic Station, taking advantage of the long winter night for continuous observations. It is optimized for high precision photometry in two separate filters Sloan g and Sloan i ranging from 100 mmag to 10 mmag (from 9 to16 mag). Among the scientific tasks there are the detection of hot Jupiters and Super Earths with the transit method, and related magnetic activity of the hosting stars. The 4m Radom dome for ICE-T together with 3 foundation pillars and the cables bundle have been already successfully installed in January 2009.
文摘For every astronomical instrument, the operating conditions are undoubtedly different from those defined in a setup experiment. Besides environmental conditions, the drives, the electronic cabinets containing heaters and fans introduce disturbances that must be taken into account already in the preliminary design phase. Such disturbances can be identified as being mostly of two types: heat sources/sinks or cooling systems responsible for heat transfer via conduction, radiation, free and forced convection on one side and random and periodic vibrations on the other. For this reason, a key role already from the very beginning of the design process is played by integrated model merging the outcomes based on a Finite Element Model from thermo-structural and modal analysis into the optical model to estimate the aberrations. The current paper presents the status of such model, capable of analyzing the deformed surfaces deriving from both thermo-structural and vibrational analyses and measuring their effect in terms of optical aberrations by fitting them by Zernike and Legendre polynomial fitting respectively for circular and rectangular apertures. The independent contribution of each aberration is satisfied by the orthogonality of the polynomials and mesh uniformity.