Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by ir...Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by iron(II) oleate thermal decomposition and were supported on activated carbon and carbon nanotubes by colloid deposition method. The nanoparticles Fe@Fe3O4 are characterized by TEM and IR. Reduction of nanoparticles on AC starts at 140?C, whereas reduction of nanoparticles on CNTs starts at 200?C. Moreover, gasification of CNTs with methane releasing starts at 450?C, whereas gasification of AC is negligible at temperatures up to 800?C. All these findings illustrate a strong difference in the interaction between nanoparticles and the support material for AC and CNTs.展开更多
文摘Core-shell nanoparticles Fe@Fe3O4 supported on activated carbon (AC) and carbon nanotubes (CNTs) have been studied by H2 temperature-programmed reduction (TPR). Nanoparticles with size of 6.5 nm were synthesized by iron(II) oleate thermal decomposition and were supported on activated carbon and carbon nanotubes by colloid deposition method. The nanoparticles Fe@Fe3O4 are characterized by TEM and IR. Reduction of nanoparticles on AC starts at 140?C, whereas reduction of nanoparticles on CNTs starts at 200?C. Moreover, gasification of CNTs with methane releasing starts at 450?C, whereas gasification of AC is negligible at temperatures up to 800?C. All these findings illustrate a strong difference in the interaction between nanoparticles and the support material for AC and CNTs.