Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of pr...Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix(ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. Methods: Liver tissues from both control(normal) and carbon tetrachloride(CCl_(4))-induced fibrotic rats were decellularized using sodium dodecyl sulfate(SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Microparticles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues(MTs) comprising Huh-7 cells, human umbilical vein endothelial cells(HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. Results: Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition(EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. Conclusions: Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.展开更多
Multicellular microtissues of primary human hepatocytes(PHHs)co-cultured with other supporting cell types are a promis-ing model for drug screening and toxicological studies.However,these liver microtissues(LMs)rapidl...Multicellular microtissues of primary human hepatocytes(PHHs)co-cultured with other supporting cell types are a promis-ing model for drug screening and toxicological studies.However,these liver microtissues(LMs)rapidly lose their functions during ex vivo culture.Here,in order to mimic the cellular and structural hepatic microenvironment,we co-cultured PHHs with human mesenchymal stromal cells(MSCs)and human umbilical vein endothelial cells(HUVECs)in the presence of cell-sized microparticles(MPs)derived from liver extracellular matrix(LEMPs).The microwell culture platform enabled biofabrication of size-controlled multicellular microtissues(PHH:HUVEC:MSC=3:2:1)with efficient LEMP incorporation(about 70%at a 2:1 ratio of cells:MP).The biofabricated liver microtissues(BLMs)were cultured ex vivo for 14 days and compared to the cell-only LM in terms of gene and protein expression,functional activity,cytochrome P450(CYP450)enzyme inducibility,and drug sensitivity.The results supported superior hepatic-related gene expression,functional activity,and polarity for PHH in BLM compared to LM.CYP450 enzyme inducibility and dose-responsive sensitivity to toxic drugs were significantly higher in the BLM group.In conclusion,microtissue engineering by incorporation of tissue-specific microparticles within a multicellular microtissue can offer some advantages for drug discovery studies and cell transplantation applications.In the near future,this approach could generate a scalable platform of several functional biofabricated microtissues representing different organs.展开更多
基金financially supported by grants from Royan In-stitute(grant No.400000200)Bahar Tashkhis Teb Co.(BTT,9703,9809,and 9903)。
文摘Background: Despite considerable advancements in identifying factors contributing to the development of hepatocellular carcinoma(HCC), the pathogenesis of HCC remains unclear. In many cases, HCC is a consequence of prolonged liver fibrosis, resulting in the formation of an intricate premalignant microenvironment. The accumulation of extracellular matrix(ECM) is a hallmark of premalignant microenvironment. Given the critical role of different matrix components in regulating cell phenotype and function, this study aimed to elucidate the interplay between the fibrotic matrix and malignant features in HCC. Methods: Liver tissues from both control(normal) and carbon tetrachloride(CCl_(4))-induced fibrotic rats were decellularized using sodium dodecyl sulfate(SDS) and Triton X-100. The resulting hydrogel from decellularized ECM was processed into micro-particles via the water-in-oil emulsion method. Microparticles were subsequently incorporated into three-dimensional liver biomimetic micro-tissues(MTs) comprising Huh-7 cells, human umbilical vein endothelial cells(HUVECs), and LX-2 cells. The MTs were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium(MTS) assay at day 11, immunofluorescence staining, immunoblotting, and spheroid migration assay at day 14 after co-culture. Results: Fibrotic matrix from CCl4-treated rat livers significantly enhanced the growth rate of the MTs and their expression of CCND1 as compared to the normal one. Fibrotic matrix, also induced the expression of epithelial-to-mesenchymal transition(EMT)-associated genes such as TWIST1, ACTA2, MMP9, CDH2, and VIMENTIN in the MTs as compared to the normal matrix. Conversely, the expression of CDH1 and hepatic maturation genes HNF4A, ALB, CYP3A4 was decreased in the MTs when the fibrotic matrix was used. Furthermore, the fibrotic matrix increased the migration of the MTs and their secretion of alpha-fetoprotein. Conclusions: Our findings suggest a regulatory role for the fibrotic matrix in promoting cancerous phenotype, which could potentially accelerate the progression of malignancy in the liver.
基金supported by Grants from Royan Institute(No.96000165)to MV and HBBahar Tashkhis Teb Co.(Nos.BTT,9702,and 9802)+1 种基金Iran National Science Foundation(No.97014445)to MVthe Ministry of Health and Medical Education(No.56700/147)to HB.
文摘Multicellular microtissues of primary human hepatocytes(PHHs)co-cultured with other supporting cell types are a promis-ing model for drug screening and toxicological studies.However,these liver microtissues(LMs)rapidly lose their functions during ex vivo culture.Here,in order to mimic the cellular and structural hepatic microenvironment,we co-cultured PHHs with human mesenchymal stromal cells(MSCs)and human umbilical vein endothelial cells(HUVECs)in the presence of cell-sized microparticles(MPs)derived from liver extracellular matrix(LEMPs).The microwell culture platform enabled biofabrication of size-controlled multicellular microtissues(PHH:HUVEC:MSC=3:2:1)with efficient LEMP incorporation(about 70%at a 2:1 ratio of cells:MP).The biofabricated liver microtissues(BLMs)were cultured ex vivo for 14 days and compared to the cell-only LM in terms of gene and protein expression,functional activity,cytochrome P450(CYP450)enzyme inducibility,and drug sensitivity.The results supported superior hepatic-related gene expression,functional activity,and polarity for PHH in BLM compared to LM.CYP450 enzyme inducibility and dose-responsive sensitivity to toxic drugs were significantly higher in the BLM group.In conclusion,microtissue engineering by incorporation of tissue-specific microparticles within a multicellular microtissue can offer some advantages for drug discovery studies and cell transplantation applications.In the near future,this approach could generate a scalable platform of several functional biofabricated microtissues representing different organs.