In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This intr...In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This introduces the challenges of presenting encryption systems that can encode videos securely and efficiently at the same time.This paper presents an efficient opto-video encryption system using Logistic Adjusted Sine map(LASM)in the Fractional Fourier Transform(FrFT).In the presented opto-video LASM-based FrFT scheme,the encoded video is split into distinct frames and transformed into optical signals utilizing an optical supply.Each of the developed optical video frames is ciphered by utilizing the LASM in optical FrFT system using two-phase modulation forms on the video frame,the first in the time-domain and the second in the FrFT domain.In the end,the ciphervideo frame is spotted utilizing a CCD digital camera and transformed into a digital structure that can be managed using a computer.We test the proposed opto-video LASM-based FrFT scheme using various security tools.The outcomes demonstrate that the presented scheme can effectively encrypt and decrypt video signals.In addition,it encrypts videos with a high level of encryption qualitywithout sacrificing its resistance to noise immunity.Finally,the test outcomes demonstrate that the presented scheme is immune to known attacks.展开更多
This paper introduces an Improved RC6(IRC6)cipher for data encryption based on data-dependent rotations.The proposed scheme is designed with the potential of meeting the needs of the Advanced Encryption Standard(AES)....This paper introduces an Improved RC6(IRC6)cipher for data encryption based on data-dependent rotations.The proposed scheme is designed with the potential of meeting the needs of the Advanced Encryption Standard(AES).Four parameters are used to characterize the proposed scheme.These parameters are the size of the word(w)in bits,the number of rounds(r),the length of the secret key(b)in bytes,and the size of the block(L)in bits.The main feature of IRC6 is the variable number of working registers instead of just four registers as in RC6,resulting in a variable block size for plaintext and ciphertext.The IRC6 cipher is designed to improve the robustness against attacks by increasing the diffusion for each round and providing greater security with fewer rounds.The effectiveness of the proposed IRC6 scheme is verified against theoretical attacks.The proposed IRC6 scheme depends on full diffusion and confusion mechanisms regardless of the utilized block size.The proposed IRC6 scheme saves 70%of the encryption time and 64%of the decryption time of RC6.The simulation results prove that the IRC6 achieves a better encryption/decryption time compared to the traditionalRC6.Therefore,the proposed IRC6 is anticipated to fulfill the market needs and system security requirements.展开更多
基金The authors would like to thank the Deanship of Scientific Research,Taif University Researchers Supporting Project Number(TURSP-2020/08),Taif University,Taif,Saudi Arabia for supporting this research work.
文摘In the last few years,videos became the most common form of information transmitted over the internet,and a lot of the traffic is confidential and must be protected and delivered safely to its intended users.This introduces the challenges of presenting encryption systems that can encode videos securely and efficiently at the same time.This paper presents an efficient opto-video encryption system using Logistic Adjusted Sine map(LASM)in the Fractional Fourier Transform(FrFT).In the presented opto-video LASM-based FrFT scheme,the encoded video is split into distinct frames and transformed into optical signals utilizing an optical supply.Each of the developed optical video frames is ciphered by utilizing the LASM in optical FrFT system using two-phase modulation forms on the video frame,the first in the time-domain and the second in the FrFT domain.In the end,the ciphervideo frame is spotted utilizing a CCD digital camera and transformed into a digital structure that can be managed using a computer.We test the proposed opto-video LASM-based FrFT scheme using various security tools.The outcomes demonstrate that the presented scheme can effectively encrypt and decrypt video signals.In addition,it encrypts videos with a high level of encryption qualitywithout sacrificing its resistance to noise immunity.Finally,the test outcomes demonstrate that the presented scheme is immune to known attacks.
基金This study was funded by the Deanship of Scientific Research,Taif University Researchers Supporting Project number(TURSP-2020/08),Taif University,Taif,Saudi Arabia.
文摘This paper introduces an Improved RC6(IRC6)cipher for data encryption based on data-dependent rotations.The proposed scheme is designed with the potential of meeting the needs of the Advanced Encryption Standard(AES).Four parameters are used to characterize the proposed scheme.These parameters are the size of the word(w)in bits,the number of rounds(r),the length of the secret key(b)in bytes,and the size of the block(L)in bits.The main feature of IRC6 is the variable number of working registers instead of just four registers as in RC6,resulting in a variable block size for plaintext and ciphertext.The IRC6 cipher is designed to improve the robustness against attacks by increasing the diffusion for each round and providing greater security with fewer rounds.The effectiveness of the proposed IRC6 scheme is verified against theoretical attacks.The proposed IRC6 scheme depends on full diffusion and confusion mechanisms regardless of the utilized block size.The proposed IRC6 scheme saves 70%of the encryption time and 64%of the decryption time of RC6.The simulation results prove that the IRC6 achieves a better encryption/decryption time compared to the traditionalRC6.Therefore,the proposed IRC6 is anticipated to fulfill the market needs and system security requirements.