Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices.It is critical to understand the interfacial thermal transport from both experiments and underlying physic...Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices.It is critical to understand the interfacial thermal transport from both experiments and underlying physics.This review is focused on the transient opto-thermal Raman-based techniques for measuring the interfacial thermal resistance between 2D materials and substrate.This transient idea eliminates the use of laser absorption and absolute temperature rise data,therefore provides some of the highest level measurement accuracy and physics understanding.Physical concepts and perspectives are given for the time-domain differential Raman(TD-Raman),frequency-resolved Raman(FRRaman),energy transport state-resolved Raman(ET-Raman),frequency domain ET-Raman(FET-Raman),as well as laser flash Raman and dual-wavelength laser flash Raman techniques.The thermal nonequilibrium between optical and acoustic phonons,as well as hot carrier diffusion must be considered for extremely small domain characterization of interfacial thermal resistance.To have a better understanding of phonon transport across material interfaces,we introduce a new concept termed effective interface energy transmission velocity.It is very striking that many reported interfaces have an almost constant energy transmission velocity over a wide temperature range.This physics consideration is inspired by the thermal reffusivity theory,which is effective for analyzing structure-phonon scattering.We expect the effective interface energy transmission velocity to give an intrinsic picture of the transmission of energy carriers,unaltered by the influence of their capacity to carry heat.展开更多
基金supported by the National Natural Science Foundation of China(No.12204320 for J.L.and 52276080 for Y.X.)US National Science Foundation(CBET1930866 and CMMI2032464 for X.W)J.L.is grateful for the support from Shenzhen Science and Technology Program(JCYJ20220530153401003).
文摘Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices.It is critical to understand the interfacial thermal transport from both experiments and underlying physics.This review is focused on the transient opto-thermal Raman-based techniques for measuring the interfacial thermal resistance between 2D materials and substrate.This transient idea eliminates the use of laser absorption and absolute temperature rise data,therefore provides some of the highest level measurement accuracy and physics understanding.Physical concepts and perspectives are given for the time-domain differential Raman(TD-Raman),frequency-resolved Raman(FRRaman),energy transport state-resolved Raman(ET-Raman),frequency domain ET-Raman(FET-Raman),as well as laser flash Raman and dual-wavelength laser flash Raman techniques.The thermal nonequilibrium between optical and acoustic phonons,as well as hot carrier diffusion must be considered for extremely small domain characterization of interfacial thermal resistance.To have a better understanding of phonon transport across material interfaces,we introduce a new concept termed effective interface energy transmission velocity.It is very striking that many reported interfaces have an almost constant energy transmission velocity over a wide temperature range.This physics consideration is inspired by the thermal reffusivity theory,which is effective for analyzing structure-phonon scattering.We expect the effective interface energy transmission velocity to give an intrinsic picture of the transmission of energy carriers,unaltered by the influence of their capacity to carry heat.