We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars.A strong synthetic field is induced in both the s and p orbital bands by ...We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars.A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice,giving rise to the formation of Landau levels at the Dirac points.We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction,a distinctive feature of synthetic magnetic fields.Our realization implements helical edge states in the gap between n=0 and n=±1 Landau levels,experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices.In light of recent advances in the enhancement of polariton–polariton nonlinearities,the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.展开更多
We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved ...We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved via nonlinear thermo-optical tuning when the cavity-coupled optical pump is partially absorbed by the material.The locally generated heat then produces a thermal field, which influences the spatially overlapping optical modes, allowing us to alter the relative spectral separation of resonances. Furthermore, we exploit such tunability to continuously probe the coupling between different families of quasi-degenerate modes that exhibit asymmetric Fano interactions. As a particular case, we demonstrate a complete disappearance of one of the modal features in the transmission spectrum as predicted by Fano [Phys. Rev. 124, 1866(1961)]. The phenomenon is modeled as a third-order nonlinearity with a spatial distribution that depends on the stored optical field and thermal diffusion within the resonator. The performed nonlinear numerical simulations are in excellent agreement with the experimental results, which confirm the validity of the developed theory.展开更多
基金supported by the ERC grant Honeypol,the H2020-FETFLAG project PhoQus(820392)the QUANTERA project Interpol(ANR-QUAN-0003-05)+11 种基金the French National Research Agency project Quantum Fluids of Light(ANR-16-CE30-0021)the French government through the Programme Investissement d’Avenir(I-SITE ULNE/ANR-16-IDEX-0004 ULNE)managed by the Agence Nationale de la Recherchethe French RENATECH network,the Labex CEMPI(ANR-11-LABX-0007)the CPER Photonics for Society P4S and the Metropole Europeenne de Lille(MEL)via the project TFlightfinancial support from the FPI Scholarship No.BES-2015-074708the Spanish MINECO grant No.MAT2017-83722-Rsupported by funding from the ERC Starting Grant TopoColdsupported by JSPS KAKENHI Grant Number JP18H05857JST PRESTO Grant Number JPMJPR19L2JST CREST Grant Number JPMJCR19T1the RIKEN Incentive Research Projectthe Interdisciplinary Theoretical and Mathematical Sciences Program(iTHEMS)at RIKEN.
文摘We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars.A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice,giving rise to the formation of Landau levels at the Dirac points.We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction,a distinctive feature of synthetic magnetic fields.Our realization implements helical edge states in the gap between n=0 and n=±1 Landau levels,experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices.In light of recent advances in the enhancement of polariton–polariton nonlinearities,the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.
基金Fondazione Bruno Kessler(FBK)Autonomous Province of Trento
文摘We report on the modeling, simulation, and experimental demonstration of complete mode crossings of Fano resonances within chip-integrated microresonators. The continuous reshaping of resonant line shapes is achieved via nonlinear thermo-optical tuning when the cavity-coupled optical pump is partially absorbed by the material.The locally generated heat then produces a thermal field, which influences the spatially overlapping optical modes, allowing us to alter the relative spectral separation of resonances. Furthermore, we exploit such tunability to continuously probe the coupling between different families of quasi-degenerate modes that exhibit asymmetric Fano interactions. As a particular case, we demonstrate a complete disappearance of one of the modal features in the transmission spectrum as predicted by Fano [Phys. Rev. 124, 1866(1961)]. The phenomenon is modeled as a third-order nonlinearity with a spatial distribution that depends on the stored optical field and thermal diffusion within the resonator. The performed nonlinear numerical simulations are in excellent agreement with the experimental results, which confirm the validity of the developed theory.