The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The pa...The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.展开更多
The thermal radiation energy is the clean energy with a much lower environmental impact than the conventional energy. The objective of the present work is to investigate theoretically the effect of copper nanoparticle...The thermal radiation energy is the clean energy with a much lower environmental impact than the conventional energy. The objective of the present work is to investigate theoretically the effect of copper nanoparticles and carbon nanotubes (CNTs) in the presence of base fluid (water) with the variable stream condition due to the thermal radiation energy. Single-walled carbon nanotubes (SWCNTs) in the presence of base fluid flow over a porous wedge play a significant role compared to those of copper nanoparticles on absorbing the incident solar radiation and transiting it to the working fluid by convection.展开更多
文摘The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.
基金the financial support received from FRGS 1208/2013
文摘The thermal radiation energy is the clean energy with a much lower environmental impact than the conventional energy. The objective of the present work is to investigate theoretically the effect of copper nanoparticles and carbon nanotubes (CNTs) in the presence of base fluid (water) with the variable stream condition due to the thermal radiation energy. Single-walled carbon nanotubes (SWCNTs) in the presence of base fluid flow over a porous wedge play a significant role compared to those of copper nanoparticles on absorbing the incident solar radiation and transiting it to the working fluid by convection.