Magnesium alloys, having high specific strength, with a density only 2/3 of that of aluminum and 1/4 of carbon steels, have become ideal materials for low mass applications such as automobiles and electronic devices. ...Magnesium alloys, having high specific strength, with a density only 2/3 of that of aluminum and 1/4 of carbon steels, have become ideal materials for low mass applications such as automobiles and electronic devices. It was dealt with the state of the art in developing cost effective, low mass, high ductility and high creep resistance magnesium alloys that are suitable for structures and power train applications.展开更多
The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels...The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.展开更多
The inhibition effects of sodium vanadate along with inorganic coolantinhibitors were examined on corrosion of AZ91D in ASTM D1384-80 corrosive water by polarizationmeasurements. The galvanic corrosion of AZ91D couple...The inhibition effects of sodium vanadate along with inorganic coolantinhibitors were examined on corrosion of AZ91D in ASTM D1384-80 corrosive water by polarizationmeasurements. The galvanic corrosion of AZ91D coupled to 3003, 6063, and 356 Al alloys were alsotested. An effective combination of inhibitors containing (but not limited to) sodium vanadate,silicate, and nitrate was proposed for inhibition of AZ91D and prevention of galvanic corrosion.展开更多
文摘Magnesium alloys, having high specific strength, with a density only 2/3 of that of aluminum and 1/4 of carbon steels, have become ideal materials for low mass applications such as automobiles and electronic devices. It was dealt with the state of the art in developing cost effective, low mass, high ductility and high creep resistance magnesium alloys that are suitable for structures and power train applications.
文摘The automotive industry has crossed the threshold from using magnesium alloys in interior applications such as instrument panels and steering wheels to unprotected environment such as oil pan, cylinder head and wheels. The expanding territory of magnesium leads to new challenges: mainly environmental degradation of the alloys used and how they can be protected. The present critical review is aimed at understanding the corrosion behavior of magnesium and magnesium alloys in industrial and marine environments, and the effect of microstructure, additive elements and inhibitors on the corrosion mechanism.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50122118)
文摘The inhibition effects of sodium vanadate along with inorganic coolantinhibitors were examined on corrosion of AZ91D in ASTM D1384-80 corrosive water by polarizationmeasurements. The galvanic corrosion of AZ91D coupled to 3003, 6063, and 356 Al alloys were alsotested. An effective combination of inhibitors containing (but not limited to) sodium vanadate,silicate, and nitrate was proposed for inhibition of AZ91D and prevention of galvanic corrosion.