Based on the nonlinear drift-diffusion(NLDD)model,the coupled behavior between the mechanical and electrical fields in piezoelectric semiconductor(PS)PN junctions under two typical loading conditions is investigated.T...Based on the nonlinear drift-diffusion(NLDD)model,the coupled behavior between the mechanical and electrical fields in piezoelectric semiconductor(PS)PN junctions under two typical loading conditions is investigated.The governing equations for the general shell structure of the PS PN junction are derived within the framework of virtual work principles and charge continuity conditions.The distributions of the electromechanical coupling field are obtained by the Fourier series expansion and the differential quadrature method(DQM),and the nonlinearity is addressed with the iterative method.Several numerical examples are presented to investigate the effects of mechanical loading on the charge carrier transport characteristics.It is found that the barrier height of the heterojunction can be effectively modulated by mechanical loading.Furthermore,a nonlinearity index is introduced to quantify the influence of nonlinearity in the model.It is noted that,when the concentration difference between the two sides is considerable,the nonlinear results differ significantly from the linear results,thereby necessitating the adoption of the NLDD model.展开更多
In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by ...In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFE0111000)the National Natural Science Foundation of China(Nos.12372151,12302200,12172171,12172183,and U24A2005)+6 种基金the Natural Science Foundation of Jiangsu Province of China(No.BK20230873)the China Postdoctoral Science Foundation(No.2023M731671)the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2023ZB156)the Shenzhen Science and Technology Program(No.JCYJ20230807142004009)the Jiangsu Association for Science&Technology Youth Science&Technology Talents Lifting Projectthe Russian Ministry of Science and Higher Education(No.075-15-2023-580)the Shenzhen Longhua Science and Technology Innovation Special Funding(Industrial Sci-Tech Innovation Center of Low-Altitude Intelligent Networking)。
文摘Based on the nonlinear drift-diffusion(NLDD)model,the coupled behavior between the mechanical and electrical fields in piezoelectric semiconductor(PS)PN junctions under two typical loading conditions is investigated.The governing equations for the general shell structure of the PS PN junction are derived within the framework of virtual work principles and charge continuity conditions.The distributions of the electromechanical coupling field are obtained by the Fourier series expansion and the differential quadrature method(DQM),and the nonlinearity is addressed with the iterative method.Several numerical examples are presented to investigate the effects of mechanical loading on the charge carrier transport characteristics.It is found that the barrier height of the heterojunction can be effectively modulated by mechanical loading.Furthermore,a nonlinearity index is introduced to quantify the influence of nonlinearity in the model.It is noted that,when the concentration difference between the two sides is considerable,the nonlinear results differ significantly from the linear results,thereby necessitating the adoption of the NLDD model.
基金supported by the National Natural Science Foundation of China(Nos.12061131013,11972276,1211101401,12172171,and 12102183)the State Key Laboratory of Mechanics and Control of Mechanical Structures of Nanjing University of Aeronautics and Astronautics(No.MCMS-E-0520K02)+5 种基金the Fundamental Research Funds for the Central Universities of China(Nos.NE2020002 and NS2019007)the National Natural Science Foundation of China for Creative Research Groups(No.51921003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX210179)the National Natural Science Foundation of Jiangsu Province of China(No.BK20211176)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.2021Szvup061)the Jiangsu High-Level Innovative and Entrepreneurial Talents Introduction Plan(Shuangchuang Doctor Program,No.JSSCBS20210166)。
文摘In this paper,we propose a specific two-layer model consisting of a functionally graded(FG)layer and a piezoelectric semiconductor(PS)layer.Based on the macroscopic theory of PS materials,the effects brought about by the attached FG layer on the piezotronic behaviors of homogeneous n-type PS fibers and PN junctions are investigated.The semi-analytical solutions of the electromechanical fields are obtained by expanding the displacement and carrier concentration variation into power series.Results show that the antisymmetry of the potential and electron concentration distributions in homogeneous n-type PS fibers is destroyed due to the material inhomogeneity of the attached FG layer.In addition,by creating jump discontinuities in the material properties of the FG layer,potential barriers/wells can be produced in the middle of the fiber.Similarly,the potential barrier configuration near the interface of a homogeneous PS PN junction can also be manipulated in this way,which offers a new choice for the design of PN junction based devices.