The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilize...The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilized yttrium.Using Rietveld refinement,it was found that the obtained fcc phase has crystallite size smaller than 10 nm and microstrain larger than 10-3.Both conditions are required to form an fcc phase in Ti-based alloys.For all samples,the microstructure of the fcc phase consists of equiaxial crystallites with sizes smaller than 10 nm.The largest presence of fcc phase in the studied Ti alloy was found with 6 at.%Sn,because this alloy exhibits the largest microstrain(1.5×10-2)and crystallite size of 6.5 nm.Experimental data reveal that a solid solution and an amorphous phase were formed during milling.The necessary conditions to promote the formation of solid solution and amorphous phases were determined using thermodynamic calculations.When the amount of Sn increases,the energy required to form an amorphous phase varies from approximately 10 to approximately-5 k J/mol for 3 and 12 at.%Sn,respectively.The thermodynamic calculations are in agreement with XRD patterns analysis and HRTEM results.展开更多
To produce a highly refined microstructure,several metals or alloys have been processed via equal-channel angular pressing(ECAP).In this work,the mechanical and microstructural changes of the 5083 aluminum alloy in H1...To produce a highly refined microstructure,several metals or alloys have been processed via equal-channel angular pressing(ECAP).In this work,the mechanical and microstructural changes of the 5083 aluminum alloy in H11 condition after processed by two ECAP passes were investigated.An ECAP H13 steel die with an inner angle(α)of 120°and outer curvature(β)of 20°was used.The microstructural changes were associated with the loss of texture symmetry.The morphologies of the Mg2Si andα-Al(Mn,Fe)Si precipitates for the sample at the initial condition were similar to those subjected to two ECAP passes.The peak broadening measured by X-ray diffraction revealed an increment of both grain refinement and microstrain.After the second extrusion pass,the hardness increased by 62%compared with the initial condition.Moreover,the heterogeneous hardness behavior was compatible with a highly localized dislocation density.After two ECAP passes,shear parallel bands were observed to be at nearly 45°to the extrusion direction.The evaluation of first-order residual stress as a function of the depth of the analyzed sample displayed compressive or tensile values,depending on the measured face.With the plastic deformation applied,the first and second-order residual stresses exhibited significant increment.Williamson-Hall plots showed positive slopes,indicating an increment in the microstrain.展开更多
Two ternary Al-2.2Zn-0.95Mg and Al-5.SZn-2.1Mg (in wt pct) alloys, with Zn:Mg ratios close to 2.5 were produced by conventional ingot casting metallurgy. The ingots were solution heat treated at 500℃ for 0.5 h and...Two ternary Al-2.2Zn-0.95Mg and Al-5.SZn-2.1Mg (in wt pct) alloys, with Zn:Mg ratios close to 2.5 were produced by conventional ingot casting metallurgy. The ingots were solution heat treated at 500℃ for 0.5 h and aged at 180℃ for times between 0.5 and 80 h. The structural characterization was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Vickers mierohardness measurements (HV). The study was focused on the investigation of the precipitates formation and the relationship between hardness and lattice parameter for α-Al. The results showed that there was an inverse correlation for all the experimental conditions, and the aged peaks coincided with lattice parameter minima. Significant precipitates formation only occurred for the alloy containing 5.5 wt pct Zn and 2.1 wt pct Mg, provoking an important strengthening and variations in the lattice parameter, however, this was not observed for the alloy containing 2.2 wt pct Zn and 0.95 wt pct Mg. A plausible explanation of the increment of hardness values could be the presence of a well distributed η phase (MgZn2). At initial stages of the precipitation process, η′ was the most abundant precipitate while the phase τ- was observed at overaged conditions. These results showed that the aging response of the conventionally cast Al-Zn-Mg alloys could be obtained using the lattice parameter of the α-Al matrix, even for alloy systems with low precipitates formation.展开更多
基金financial support from FONDECYT Project No.1190797FONDEQUIP/EQM Project No.140095。
文摘The effect of the amount of Sn on the formation of fcc phase in Ti-13 Ta-x Sn(x=3,6,9 and 12,at.%)alloys was studied.The alloys were synthesized by mechanical alloying using a planetary mill,jar and balls of stabilized yttrium.Using Rietveld refinement,it was found that the obtained fcc phase has crystallite size smaller than 10 nm and microstrain larger than 10-3.Both conditions are required to form an fcc phase in Ti-based alloys.For all samples,the microstructure of the fcc phase consists of equiaxial crystallites with sizes smaller than 10 nm.The largest presence of fcc phase in the studied Ti alloy was found with 6 at.%Sn,because this alloy exhibits the largest microstrain(1.5×10-2)and crystallite size of 6.5 nm.Experimental data reveal that a solid solution and an amorphous phase were formed during milling.The necessary conditions to promote the formation of solid solution and amorphous phases were determined using thermodynamic calculations.When the amount of Sn increases,the energy required to form an amorphous phase varies from approximately 10 to approximately-5 k J/mol for 3 and 12 at.%Sn,respectively.The thermodynamic calculations are in agreement with XRD patterns analysis and HRTEM results.
基金PAPIIT-UNAM through grants IN107917 and scholarship CONACyT(No.592722)。
文摘To produce a highly refined microstructure,several metals or alloys have been processed via equal-channel angular pressing(ECAP).In this work,the mechanical and microstructural changes of the 5083 aluminum alloy in H11 condition after processed by two ECAP passes were investigated.An ECAP H13 steel die with an inner angle(α)of 120°and outer curvature(β)of 20°was used.The microstructural changes were associated with the loss of texture symmetry.The morphologies of the Mg2Si andα-Al(Mn,Fe)Si precipitates for the sample at the initial condition were similar to those subjected to two ECAP passes.The peak broadening measured by X-ray diffraction revealed an increment of both grain refinement and microstrain.After the second extrusion pass,the hardness increased by 62%compared with the initial condition.Moreover,the heterogeneous hardness behavior was compatible with a highly localized dislocation density.After two ECAP passes,shear parallel bands were observed to be at nearly 45°to the extrusion direction.The evaluation of first-order residual stress as a function of the depth of the analyzed sample displayed compressive or tensile values,depending on the measured face.With the plastic deformation applied,the first and second-order residual stresses exhibited significant increment.Williamson-Hall plots showed positive slopes,indicating an increment in the microstrain.
文摘Two ternary Al-2.2Zn-0.95Mg and Al-5.SZn-2.1Mg (in wt pct) alloys, with Zn:Mg ratios close to 2.5 were produced by conventional ingot casting metallurgy. The ingots were solution heat treated at 500℃ for 0.5 h and aged at 180℃ for times between 0.5 and 80 h. The structural characterization was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Vickers mierohardness measurements (HV). The study was focused on the investigation of the precipitates formation and the relationship between hardness and lattice parameter for α-Al. The results showed that there was an inverse correlation for all the experimental conditions, and the aged peaks coincided with lattice parameter minima. Significant precipitates formation only occurred for the alloy containing 5.5 wt pct Zn and 2.1 wt pct Mg, provoking an important strengthening and variations in the lattice parameter, however, this was not observed for the alloy containing 2.2 wt pct Zn and 0.95 wt pct Mg. A plausible explanation of the increment of hardness values could be the presence of a well distributed η phase (MgZn2). At initial stages of the precipitation process, η′ was the most abundant precipitate while the phase τ- was observed at overaged conditions. These results showed that the aging response of the conventionally cast Al-Zn-Mg alloys could be obtained using the lattice parameter of the α-Al matrix, even for alloy systems with low precipitates formation.