Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-o...Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.展开更多
A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid ...A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.展开更多
To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during every refueling outage and determined whe...To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during every refueling outage and determined whether repair or replacement after evaluating UT data. Generally used UT thickness data evaluation methods are Band, Blanket, and PTP (Point to Point) methods. Those may not desirable to identify wall thinning on local area caused by erosion. This is because the space between inspecting points of those methods are wide for covering full surface being inspected components. When the evaluation methods are applied to a certain pipe component, unnecessary re-inspection may also be generated even though wall thinning of components does not progress. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing the number of newly inspected components may be generated. EPRI (Electric Power Research Institute in USA) has suggested several statistical methods such as FRIEDMAN test method, ANOVA (Analysis of Variance) method, Monte Carlo method, and TPM (Total Point Method) to distinguish whether multiple inspecting components have been thinned or not. This paper presents the NAM (Near Area of Minimum) method developed by KEPCO-E & C for distinguishing whether multiple inspecting components have been thinned or not. In addition, this paper presents the analysis results for multiple inspecting ones over three times based on the NAM method compared with the other methods suggested by EPRI.展开更多
There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Im...There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.展开更多
文摘Recently, damage caused by liquid droplet impingement erosion (LDIE) in addition to flow-accelerated corrosion (FAC) has frequently occurred in the secondary side steam piping of nuclear power plants, and the damage-occurring frequency is expected to increase as their operating years’ increase. In order to scrutinize its causes, therefore, an experimental study was conducted to understand how the behavior of LDIE-FAC multiple degradation changes when the piping of nuclear power plants is operated for a long time. Experimental results show that more magnetite was formed on the surface of the carbon steel specimen than on the low-alloy steel specimen, and that the rate of magnetite formation and extinction reached equilibrium due to the complex action of liquid droplet impingement erosion and flow-accelerated corrosion after a certain period of time. Furthermore, it was confirmed at the beginning of the experiment that A106 Gr.B specimen has more mass loss than A335 P22 specimen. After a certain period of time, however, the mass loss tends to be the opposite. This is presumed to have resulted from the magnetite formed on the surface playing a role in suppressing liquid droplet impingement erosion. In addition, it was confirmed that the amount of erosion linearly increases under the conditions in which the formation and extinction of magnetite reach equilibrium.
文摘A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.
文摘To manage the wall thinning of carbon steel piping in nuclear power plants, the utility of Korea has performed thickness inspection for some quantity of pipe components during every refueling outage and determined whether repair or replacement after evaluating UT data. Generally used UT thickness data evaluation methods are Band, Blanket, and PTP (Point to Point) methods. Those may not desirable to identify wall thinning on local area caused by erosion. This is because the space between inspecting points of those methods are wide for covering full surface being inspected components. When the evaluation methods are applied to a certain pipe component, unnecessary re-inspection may also be generated even though wall thinning of components does not progress. In those cases, economical loss caused by repeated inspection and problems of maintaining the pipe integrity followed by decreasing the number of newly inspected components may be generated. EPRI (Electric Power Research Institute in USA) has suggested several statistical methods such as FRIEDMAN test method, ANOVA (Analysis of Variance) method, Monte Carlo method, and TPM (Total Point Method) to distinguish whether multiple inspecting components have been thinned or not. This paper presents the NAM (Near Area of Minimum) method developed by KEPCO-E & C for distinguishing whether multiple inspecting components have been thinned or not. In addition, this paper presents the analysis results for multiple inspecting ones over three times based on the NAM method compared with the other methods suggested by EPRI.
文摘There are several thousand piping components in a nuclear power plant. These components are affected by degradation mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, and LDI (Liquid Droplet Impingement). Therefore, nuclear power plants implement inspection programs to detect and control damages caused by such mechanisms. UT (Ultrasonic Test), one of the non-destructive tests, is the most commonly used method for inspecting the integrity of piping components. According to the management plan, several hundred components, being composed of as many as 100 to 300 inspection data points, are inspected during every RFO (Re-Fueling Outage). To acquire UT data of components, a large amount of expense is incurred. It is, however, difficult to find a proper method capable of verifying the reliability of UT data prior to the wear rate evaluation. This study describes the review of UT evaluation process and the influence of UT measurement error. It is explored that SAM (Square Average Method), which was suggested as a method for reliability analysis in the previous study, is found to be suitable for the determination whether the measured thickness is acceptable or not. And, safety factors are proposed herein through the statistical analysis taking into account the components’ type.