The emission of NOx during coal combustion contributes to the formation of acid rain and photochemical smog,which would seriously affect the quality of atmospheric environment.Therefore,the decrease of NOx is of great...The emission of NOx during coal combustion contributes to the formation of acid rain and photochemical smog,which would seriously affect the quality of atmospheric environment.Therefore,the decrease of NOx is of great importance for improving the efficient utilization of coal.The present review comprehensively summarized the influence factors and mechanisms of migration and transformation of nitrogen during the coal pyrolysis and combustion based on experimental study and quantum chemical calculation.Firstly,in the process of pyrolysis:the occurrence state and transformation of nitrogen were concluded.The influence of temperature,atmosphere,heating rate and catalyst on formation of NOx precursor and nitrogen migration path at the molecular level were summarized;Secondly,during the process of combustion:the influence of temperature,ambient oxygen concentration,physical structure of coal char,catalyst on heterogeneous oxidation of char(N)were summarized;The effects of char surface properties,catalyst and ambient atmosphere on heterogeneous reduction of NOx were also concluded.Based on the quantum chemical calculation,the reaction path of heterogeneous oxidation of char-N and heterogeneous reduction of NOx were described in detail.Current studies focus more on the generation of HCN and NH3,but in order to reduce the pollution of NOx from the source,it is necessary to further improve the process conditions and the optimal formula of producing more N2 during pyrolysis,as well as clarify the path of the generation of N2.Experiments study and quantum chemistry calculation should be combined to complete the research of directional nitrogen reduction during pyrolysis and denitration during combustion.展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
A series of ZnO/SiO_(2) adsorbents were prepared by a sol-gel method using tetraethyl orthosilicate,ethylene glycol(EG)and nitrates as precursors.The effect of gel drying temperature on the structure and desulfurizati...A series of ZnO/SiO_(2) adsorbents were prepared by a sol-gel method using tetraethyl orthosilicate,ethylene glycol(EG)and nitrates as precursors.The effect of gel drying temperature on the structure and desulfurization performance of the adsorbents were investigated in detail.It is found that the low drying temperature led to a weak interaction among EG,Si AOH/H_(2)O and the nitrates in the gel system,which caused the oxidation of EG by NO3-and formed zinc glyoxylate complex during the gel calcination process,whereas this oxidation process also occurred at a high drying temperature during the gel drying process.The formed zinc glyoxylate complex promoted the generation of monodentate carbonate on the surface of Zn O,which resulted in the inferior desulfurization performance of adsorbents despite they have smaller Zn O nanoparticles.The gel dried at 120°C formed the hydrogen bonds between EG and Si AOH/H_(2)O and a strong interaction between zinc oxo-clusters and NO3-was also found in the gel system,which avoided the oxidation of EG by NO3-during the preparation process and the Zn O nanoparticles with sizes of 6 nm were formed by a combustion method.The adsorbent affords a highest sulfur capacity of 104.9 mg·g^(-1) in this case.In addition,the gel drying temperature has a significant influence on the textural properties of the adsorbents except their surface area.展开更多
Amine modification is an effective strategy to improve the H_(2)S removal performance of Cu-BTC.In order to avoid the problem of pore blockage after amine modification in post synthesis impregnation,herein a series of...Amine modification is an effective strategy to improve the H_(2)S removal performance of Cu-BTC.In order to avoid the problem of pore blockage after amine modification in post synthesis impregnation,herein a series of Cu-BTC modified with organic amine adsorbents were prepared via an in-situ one-pot method and the H_(2)S removal performance under ambient conditions was tested.It is found that the introduced organic amines,depending on the types of amine selected,have a significant influence on the growth of Cu-BTC and its textural properties.The H_(2)S removal performance on the as-prepared materials suggested that the amine modified samples remarkably improved the H_(2)S removal capacities with an order of BA-Cu-BTC>TEA-Cu-BTC>TEOA-Cu-BTC>Cu-BTC.Besides the enlarged surface area and the increased mesopores volumes,BA has the advantages of smaller steric hindrance and-NH_(2)groups,among which the former increased the accessibility of Cu active sites while the latter acted as additional active sites for H_(2)S capturing,thus affording BA-Cu-BTC highest breakthrough capacity of 77.3 mg S/g.Overall,this study elaborates the effect of organic amines in-situ modification on the Cu-BTC structure and desulfurization.展开更多
The development of hierarchical nanostructure is demonstrated as an effective strategy to improve catalytic activity and stability of electrocatalysts.Herein,a novel leaf-like hierarchically porous heterojunction flak...The development of hierarchical nanostructure is demonstrated as an effective strategy to improve catalytic activity and stability of electrocatalysts.Herein,a novel leaf-like hierarchically porous heterojunction flake arrays(FAs),integrated graphitic N-doped carbon(NC)with amorphous B,N-doped carbon(BNC),has been designed and grown on flexible carbon fiber(CF)using metal-organic framework(MOF)FAs and green ionic liquids as precursors.The hierarchical heterojunction structure possesses micro-and nano-scaled pores,large surface areas,and exposed high-density catalytic active sites,which enhances electronic conductivity and offers accessible transport channels for effectively decreasing mass transport resistance.The results of discrete Fourier transform(DFT)calculations and experiments also suggest that the catalytic activity has been promoted by the heterojunction structure through narrowing the banding gap.Consequently,the resultant nanohybrid microelectrode exhibits remarkable electrochemical sensing performance towards H2O2 with a low detection limit of 50 nM,and a high sensitivity of 213μA×mM-1×cm-2,as well as good anti-interference capability.The practical application of nanohybrid fiber microelectrode has been explored by real-time monitoring H2O2 released from live colon cells and surgically-resected fresh colon cancer tissue,which can provide important information for the identification of different types of cells as well as distinguish cancer cells from normal ones.We believe this research will pave the way towards the development of advanced carbon nanomaterials for application in the fields of electrochemistry,biosensing,and cancer diagnosis.展开更多
Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel f...Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory.The influences of regeneration temperature,space velocity and regeneration gas concentration in SO_(2) atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor.The changes of phase and the composition of the Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD)and X-ray Photoelectron spectroscopy(XPS),and the changes of pore structure were characterized by the mercury intrusion method.The results show that the major products are Fe3O4 and elemental sulfur;the influences of regeneration temperature,space velocity and SO_(2) concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible.The desulfurization sorbent cannot be regenerated at 500℃ in SO_(2) atmosphere.Within the range of 600℃-800℃,the time of regeneration becomes shorter,and the regeneration conversion increases as the temperature rises.The time of regeneration also becomes shorter,and the elemental sulfur content of tail gas increases as the SO_(2) concentration in inlet is increased.The increase in space velocity enhances the reactive course;the best VSP is 6000 h^(-1) for regeneration conversion.At 800℃,20 vol-%SO_(2) and 6000 h^(-1),the regeneration conversion can reach nearly to 90%.展开更多
基金supported by National Natural Science Foundation of China(21878210)Shanxi “1331”Civil Clean Fuel Engineering Research Center,Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0313)+1 种基金Patent Promotion and implementation in Shanxi Province(20200719)sponsored by Taiyuan Green Coke Energy Co.,Ltd.(China)。
文摘The emission of NOx during coal combustion contributes to the formation of acid rain and photochemical smog,which would seriously affect the quality of atmospheric environment.Therefore,the decrease of NOx is of great importance for improving the efficient utilization of coal.The present review comprehensively summarized the influence factors and mechanisms of migration and transformation of nitrogen during the coal pyrolysis and combustion based on experimental study and quantum chemical calculation.Firstly,in the process of pyrolysis:the occurrence state and transformation of nitrogen were concluded.The influence of temperature,atmosphere,heating rate and catalyst on formation of NOx precursor and nitrogen migration path at the molecular level were summarized;Secondly,during the process of combustion:the influence of temperature,ambient oxygen concentration,physical structure of coal char,catalyst on heterogeneous oxidation of char(N)were summarized;The effects of char surface properties,catalyst and ambient atmosphere on heterogeneous reduction of NOx were also concluded.Based on the quantum chemical calculation,the reaction path of heterogeneous oxidation of char-N and heterogeneous reduction of NOx were described in detail.Current studies focus more on the generation of HCN and NH3,but in order to reduce the pollution of NOx from the source,it is necessary to further improve the process conditions and the optimal formula of producing more N2 during pyrolysis,as well as clarify the path of the generation of N2.Experiments study and quantum chemistry calculation should be combined to complete the research of directional nitrogen reduction during pyrolysis and denitration during combustion.
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金financially supported by the National Natural Science Foundation of China(22078223 and 21878209)Shanxi Province Science Foundation for Youths(20210302123065)。
文摘A series of ZnO/SiO_(2) adsorbents were prepared by a sol-gel method using tetraethyl orthosilicate,ethylene glycol(EG)and nitrates as precursors.The effect of gel drying temperature on the structure and desulfurization performance of the adsorbents were investigated in detail.It is found that the low drying temperature led to a weak interaction among EG,Si AOH/H_(2)O and the nitrates in the gel system,which caused the oxidation of EG by NO3-and formed zinc glyoxylate complex during the gel calcination process,whereas this oxidation process also occurred at a high drying temperature during the gel drying process.The formed zinc glyoxylate complex promoted the generation of monodentate carbonate on the surface of Zn O,which resulted in the inferior desulfurization performance of adsorbents despite they have smaller Zn O nanoparticles.The gel dried at 120°C formed the hydrogen bonds between EG and Si AOH/H_(2)O and a strong interaction between zinc oxo-clusters and NO3-was also found in the gel system,which avoided the oxidation of EG by NO3-during the preparation process and the Zn O nanoparticles with sizes of 6 nm were formed by a combustion method.The adsorbent affords a highest sulfur capacity of 104.9 mg·g^(-1) in this case.In addition,the gel drying temperature has a significant influence on the textural properties of the adsorbents except their surface area.
基金Supported by National Natural Science Foundation of China[Grant No.21878209,Grant No.22078223 and Grant No.22208233]Basic Research Project of Shanxi Province[Grant No.20210302123065].
文摘Amine modification is an effective strategy to improve the H_(2)S removal performance of Cu-BTC.In order to avoid the problem of pore blockage after amine modification in post synthesis impregnation,herein a series of Cu-BTC modified with organic amine adsorbents were prepared via an in-situ one-pot method and the H_(2)S removal performance under ambient conditions was tested.It is found that the introduced organic amines,depending on the types of amine selected,have a significant influence on the growth of Cu-BTC and its textural properties.The H_(2)S removal performance on the as-prepared materials suggested that the amine modified samples remarkably improved the H_(2)S removal capacities with an order of BA-Cu-BTC>TEA-Cu-BTC>TEOA-Cu-BTC>Cu-BTC.Besides the enlarged surface area and the increased mesopores volumes,BA has the advantages of smaller steric hindrance and-NH_(2)groups,among which the former increased the accessibility of Cu active sites while the latter acted as additional active sites for H_(2)S capturing,thus affording BA-Cu-BTC highest breakthrough capacity of 77.3 mg S/g.Overall,this study elaborates the effect of organic amines in-situ modification on the Cu-BTC structure and desulfurization.
基金This work is supported by the National Natural Science Foundation of China(Nos.81572866,81773104,81773263,81873931,and 81974382)the China Postdoctoral Science Foundation(No.2019M652617)the National Key Basic Research Program of China(No.2015CB5540007).
文摘The development of hierarchical nanostructure is demonstrated as an effective strategy to improve catalytic activity and stability of electrocatalysts.Herein,a novel leaf-like hierarchically porous heterojunction flake arrays(FAs),integrated graphitic N-doped carbon(NC)with amorphous B,N-doped carbon(BNC),has been designed and grown on flexible carbon fiber(CF)using metal-organic framework(MOF)FAs and green ionic liquids as precursors.The hierarchical heterojunction structure possesses micro-and nano-scaled pores,large surface areas,and exposed high-density catalytic active sites,which enhances electronic conductivity and offers accessible transport channels for effectively decreasing mass transport resistance.The results of discrete Fourier transform(DFT)calculations and experiments also suggest that the catalytic activity has been promoted by the heterojunction structure through narrowing the banding gap.Consequently,the resultant nanohybrid microelectrode exhibits remarkable electrochemical sensing performance towards H2O2 with a low detection limit of 50 nM,and a high sensitivity of 213μA×mM-1×cm-2,as well as good anti-interference capability.The practical application of nanohybrid fiber microelectrode has been explored by real-time monitoring H2O2 released from live colon cells and surgically-resected fresh colon cancer tissue,which can provide important information for the identification of different types of cells as well as distinguish cancer cells from normal ones.We believe this research will pave the way towards the development of advanced carbon nanomaterials for application in the fields of electrochemistry,biosensing,and cancer diagnosis.
基金supported by the National Basic Research Program of China(Grant No.2005CB221203)the Shanxi Province Key Technologies R&D Program(No.20080322035).
文摘Regeneration of a high-temperature coal gas desulfurization sorbent is a key technology in its industrial applications.A Fe_(2)O_(3)-based high-temperature coal gas desulfurizer was prepared using red mud from steel factory.The influences of regeneration temperature,space velocity and regeneration gas concentration in SO_(2) atmosphere on regeneration performances of the desulfurization sorbent were tested in a fixed bed reactor.The changes of phase and the composition of the Fe_(2)O_(3)-based high-temperature coal gas desulfurization sorbent before and after regeneration were examined by X-ray diffraction(XRD)and X-ray Photoelectron spectroscopy(XPS),and the changes of pore structure were characterized by the mercury intrusion method.The results show that the major products are Fe3O4 and elemental sulfur;the influences of regeneration temperature,space velocity and SO_(2) concentration in inlet on regeneration performances and the changes of pore structure of the desulfurization sorbent before and after regeneration are visible.The desulfurization sorbent cannot be regenerated at 500℃ in SO_(2) atmosphere.Within the range of 600℃-800℃,the time of regeneration becomes shorter,and the regeneration conversion increases as the temperature rises.The time of regeneration also becomes shorter,and the elemental sulfur content of tail gas increases as the SO_(2) concentration in inlet is increased.The increase in space velocity enhances the reactive course;the best VSP is 6000 h^(-1) for regeneration conversion.At 800℃,20 vol-%SO_(2) and 6000 h^(-1),the regeneration conversion can reach nearly to 90%.