Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom ce...Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.展开更多
Poly(3-hexylthiophene)(P3HT),as a traditional organic hole-transporting material(HTM),is widely used in thin-film solar cells due to its high charge mobility and good thermal stability.However,the P3HT films obtained ...Poly(3-hexylthiophene)(P3HT),as a traditional organic hole-transporting material(HTM),is widely used in thin-film solar cells due to its high charge mobility and good thermal stability.However,the P3HT films obtained by the traditional method are amorphous,which is unfavorable to hole extraction and transport.Here,a low-toxicity solvent 1,2,4-trimethylbenzene(TMB)was used as the solvent instead of the commonly used halogen solvent chlorobenzene(CB)to dissolve P3HT.Thus,the self-assembled nanofibrous P3HT film was prepared and applied as HTM in the newly emerged Sb_(2)S_(3)solar cells.According to the density functional theory calculations,the interface contact between TMB-P3HT and Sb_(2)S_(3)was enhanced via the bonding interaction of S in P3HT and Sb in Sb_(2)S_(3).Through transient absorption spectroscopy characterization,the enhanced interface contact improves the charge extraction ability of TMB-P3HT when compared to the CB-P3HT film.Thus,the TMB-P3HT-based Sb_(2)S_(3)solar cell delivers a power conversion efficiency of 6.21%,which is 9.7%higher than that of the CB-P3HT-based device.Furthermore,the dopant-free TMB-P3HT-based Sb_(2)S_(3)devices exhibit excellent environmental stability compared with Spiro-OMeTAD-based devices.This work demonstrates that the application of P3HT and the solvent engineering of HTM are applicable strategies for developing Sb_(2)S_(3)solar cells with high efficiency and stability.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0405600)National Natural Science Foundation of China(Grant No.22275180)+2 种基金School-Local Cooperation Industrial Innovation Guidance Fund Key Project,Hefei University of Technology,China(Grant No.JZ2022YDZJ0087)Wuhu Major Engineering Application Project,China(Grant No.W2022JSKF0499)Collaborative Innovation Program of Hefei Science Center,CAS.
文摘Antimony selenide(Sb_(2)Se_(3))semiconducting material possesses a band gap of 1.05-1.2 eV and has been widely applied in single-junction solar cells.Based on its band gap,Sb_(2)Se_(3)can also be used as the bottom cell absorber material in tandem solar cells.More importantly,Sb_(2)Se_(3)solar cells exhibit excellent stability with nontoxic compositional elements.The band gap of organic-inorganic hybrid perovskite is tunable over a wide range.In this work,we demonstrate for the first time a perovskite/antimony selenide four-terminal tandem solar cell with a specially designed and fabricated transparent electrode for an optimized spectral response.By adjusting the thickness of the transparent electrode layer of the top cell,the wide-band-gap perovskite top solar cell achieves an efficiency of 17.88%,while the optimized antimony selenide bottom cell delivers a power conversion efficiency of 7.85%by introducing a double electron transport layer.Finally,the four-termi-nal tandem solar cell achieves an impressive efficiency exceeding 20%.This work provides a new tandem device structure and demonstrates that antimony selenide is a promising absorber material for bottom cell applications in tandem solar cells.
基金supported by National Key Research and Development Program of China(2019YFA0405600)National Natural Science Foundation of China(U19A2092 and 22005293)+1 种基金Institute of Energy,Hefei Comprehensive National Science Center(Grant no.21KZS212)Collaborative Innovation Program of Hefei Science Center,CAS.
文摘Poly(3-hexylthiophene)(P3HT),as a traditional organic hole-transporting material(HTM),is widely used in thin-film solar cells due to its high charge mobility and good thermal stability.However,the P3HT films obtained by the traditional method are amorphous,which is unfavorable to hole extraction and transport.Here,a low-toxicity solvent 1,2,4-trimethylbenzene(TMB)was used as the solvent instead of the commonly used halogen solvent chlorobenzene(CB)to dissolve P3HT.Thus,the self-assembled nanofibrous P3HT film was prepared and applied as HTM in the newly emerged Sb_(2)S_(3)solar cells.According to the density functional theory calculations,the interface contact between TMB-P3HT and Sb_(2)S_(3)was enhanced via the bonding interaction of S in P3HT and Sb in Sb_(2)S_(3).Through transient absorption spectroscopy characterization,the enhanced interface contact improves the charge extraction ability of TMB-P3HT when compared to the CB-P3HT film.Thus,the TMB-P3HT-based Sb_(2)S_(3)solar cell delivers a power conversion efficiency of 6.21%,which is 9.7%higher than that of the CB-P3HT-based device.Furthermore,the dopant-free TMB-P3HT-based Sb_(2)S_(3)devices exhibit excellent environmental stability compared with Spiro-OMeTAD-based devices.This work demonstrates that the application of P3HT and the solvent engineering of HTM are applicable strategies for developing Sb_(2)S_(3)solar cells with high efficiency and stability.
基金supported by the National Natural Science Foundation of China (22005293, U19A2092 and 22275180)the National Key Research and Development Program of China (2019YFA0405600)+1 种基金the Institute of Energy, Hefei Comprehensive National Science Center (21KZS212)the Collaborative Innovation Program of Hefei Science Center, CAS。