A Mg−3.2Bi−0.8Ca(BX31,wt.%)ternary alloy with a yield strength of~358.1 MPa was fabricated by hot extrusion,room-temperature(RT)rotary swaging and subsequent aging treatment.A fine grain structure(~2μm)and a few seco...A Mg−3.2Bi−0.8Ca(BX31,wt.%)ternary alloy with a yield strength of~358.1 MPa was fabricated by hot extrusion,room-temperature(RT)rotary swaging and subsequent aging treatment.A fine grain structure(~2μm)and a few secondary phases were observed in the as-extruded alloy,accompanied by a weak non-basal texture.After RT rotary swaging,the average grain size was reduced to~1μm via continuous dynamic recrystallization(CDRX).In addition,a large number of residual dislocations piled up within the grain interior,along with the dynamic precipitation of nano-phases.Peak aging occurred rapidly at 448 K for 35 min.After aging,the grain size hardly changed,the density of residual dislocations slightly decreased,and a large number of nano-precipitates were introduced at the dislocation pile-up sites.The grain boundary strengthening,dislocation strengthening and precipitation strengthening co-dominated the strength of the as-aged alloy.展开更多
基金supported by the financial supports from the National Key Research and Development Program of China(No.2021YFB3701100)the National Natural Science Foundation of China(Nos.51901204,52161023,52204407)+3 种基金Key Research and Development Plan of Shanxi Province,China(No.202102050201005)Science and Technology Project of Yunnan Precious Metal Laboratory,China(No.YPML-2023050208)Yunnan Science and Technology Planning Project,China(Nos.202201AU070010,202301AT070276,202302AB080008,202303AA080001)the Second Professional Practice Innovation Project of Yunnan University,China(No.ZC-22221620).
文摘A Mg−3.2Bi−0.8Ca(BX31,wt.%)ternary alloy with a yield strength of~358.1 MPa was fabricated by hot extrusion,room-temperature(RT)rotary swaging and subsequent aging treatment.A fine grain structure(~2μm)and a few secondary phases were observed in the as-extruded alloy,accompanied by a weak non-basal texture.After RT rotary swaging,the average grain size was reduced to~1μm via continuous dynamic recrystallization(CDRX).In addition,a large number of residual dislocations piled up within the grain interior,along with the dynamic precipitation of nano-phases.Peak aging occurred rapidly at 448 K for 35 min.After aging,the grain size hardly changed,the density of residual dislocations slightly decreased,and a large number of nano-precipitates were introduced at the dislocation pile-up sites.The grain boundary strengthening,dislocation strengthening and precipitation strengthening co-dominated the strength of the as-aged alloy.