Low-dimensional(LD)halide perovskites have attracted considerable attention due to their distinctive structures and exceptional optoelectronic properties,including high absorption coefficients,extended charge carrier ...Low-dimensional(LD)halide perovskites have attracted considerable attention due to their distinctive structures and exceptional optoelectronic properties,including high absorption coefficients,extended charge carrier diffusion lengths,suppressed non-radiative recombination rates,and intense photoluminescence.A key advantage of LD perovskites is the tunability of their optical and electronic properties through the precise optimization of their structural arrangements and dimensionality.This review systematically examines recent progress in the synthesis and optoelectronic characterizations of LD perovskites,focusing on their structural,optical,and photophysical properties that underpin their versatility in diverse applications.The review further summarizes advancements in LD perovskite-based devices,including resistive memory,artificial synapses,photodetectors,light-emitting diodes,and solar cells.Finally,the challenges associated with stability,scalability,and integration,as well as future prospects,are discussed,emphasizing the potential of LD perovskites to drive breakthroughs in device efficiency and industrial applicability.展开更多
基金funding from FCT(Fundagao para a Ciencia e Tecnologia,I.P.)under the projects LA/P/0037/2020,UIDP/50025/2020 and UIDB/50025/2020 of the Associate Laboratory Institute of Nanostructures,Nanomodelling and Nanofabrication-i3Nby the projects FlexSolar(PTDC/CTM-REF/1008/2020),and SpaceFlex(2022.01610.PTDC,DOI:10.54499/2022.01610.PTDC)+1 种基金supported by the project M-ECO2-Industrial Cluster for advanced biofuel production,Ref.C644930471-00000041,R2U Technologies and Befunding from the European Union via the project X-STREAM(Horizon EU,ERC CoG,No 101124803)the support of a fellowship from the"la Caixa"Foundation(ID 100010434)。
文摘Low-dimensional(LD)halide perovskites have attracted considerable attention due to their distinctive structures and exceptional optoelectronic properties,including high absorption coefficients,extended charge carrier diffusion lengths,suppressed non-radiative recombination rates,and intense photoluminescence.A key advantage of LD perovskites is the tunability of their optical and electronic properties through the precise optimization of their structural arrangements and dimensionality.This review systematically examines recent progress in the synthesis and optoelectronic characterizations of LD perovskites,focusing on their structural,optical,and photophysical properties that underpin their versatility in diverse applications.The review further summarizes advancements in LD perovskite-based devices,including resistive memory,artificial synapses,photodetectors,light-emitting diodes,and solar cells.Finally,the challenges associated with stability,scalability,and integration,as well as future prospects,are discussed,emphasizing the potential of LD perovskites to drive breakthroughs in device efficiency and industrial applicability.