Traditional pyrometallurgy and hydrometallurgy processes primarily focus on the recovery of valuable metals(Co,Ni,etc.)from spent lithium-ion batteries.However,these methods are not economical for recycling cheap LiFe...Traditional pyrometallurgy and hydrometallurgy processes primarily focus on the recovery of valuable metals(Co,Ni,etc.)from spent lithium-ion batteries.However,these methods are not economical for recycling cheap LiFePO_(4).Herein,a synergistic thermal-decomposition and electric-drive strategy is proposed to recover the whole spent LiFePO_(4)electrode by in-situ recovering the inactive lithium(dead lithium and trapped interlayer lithium).Firstly,the organic components in the dense solid electrolyte interface(SEI)are effectively decomposed through thermal-decomposition processing,exposing the dead lithium encapsulated within the SEI and recovering the electron channels between the dead lithium and graphite.Leveraging the difference between the Gibbs free energy of the dead lithium and graphite as the driving force facilitates the dead lithium inserting into the anode.Then,fully utilizing the remaining discharge capacity of the spent LiFePO_(4)cell,the inactive lithium is reinserted into LiFePO_(4)lattice during the electric-drive process.Consequently,the reactivated lithium content increases by more than 16%,reaching a capacity of 134.2 mA h g^(-1)compared to 115.2 mA h g^(-1)from degraded LiFePO_(4),allowing for effective participation in the subsequent cycling.This work provides new perspectives on highly profitable cycles with low energy and material consumption and a low carbon footprint.展开更多
Tiller angle is a key feature of the architecture of cultivated rice (Oryza sativa), since it determines planting density and influences rice yield. Our previous work identified Tiller Angle Control 1 (TACI) as a ...Tiller angle is a key feature of the architecture of cultivated rice (Oryza sativa), since it determines planting density and influences rice yield. Our previous work identified Tiller Angle Control 1 (TACI) as a major quantitative trait locus that controls rice filler angle. To further clarify the evolutionary characterization of the TAC1 gene, we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice, including 43 accessions of O. rufipogon and five accessions of O. nivara. Only one single nucleotide polymorphism (SNP), a synonymous substitution, was detected in TAC1 coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TAC1 coding regions of wild rice accessions. These data indicate that little natural mutation and modification in the TAC1 coding region occurred within the cultivated rice and its progenitor during evolution. Nucleotide diversities in the TAC1 gene regions of O. sativa and O. rufipogon of 0.00116 and 0.00112, respectively, further indicate that TAC1 has been highly conserved during the course of rice domestication. A functional nucleotide polymorphism (FNP) of TAC1 was only found in the japonica rice group. A neutrality test revealed strong selection, especially in the 3'-flanking region of the TAC1 coding region containing the FNP in the japonica rice group. However, no selection occurred in the indica and wild-rice groups. A phylogenetic tree derived from TAC1 sequence analysis suggests that the indica and japonica subspecies arose indepen- dently during the domestication of wild rice.展开更多
Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice productio...Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two gen- erations (BC4F2 and BC4F4), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both genera-tions. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future.展开更多
With the rapid development of new technologies and global trade and increasing collaboration am ong countries worldwide,public health has become a global issue.Global health,as a new discipline,has been drawing more a...With the rapid development of new technologies and global trade and increasing collaboration am ong countries worldwide,public health has become a global issue.Global health,as a new discipline,has been drawing more attention from both academ ia and governments.The Belt and Road Initiative(BRI),proposed by China in 2013,aimed to prom ote trade and resource exchange,including education,research,and health issues,with over 60 countries in Asia,Africa,and Europe.The BRI provides good opportunities for involved countries to address health problems jointly as well.In response to the BRI and to promote international collaboration on global health issues,"The 2017 Belt and Road Initiative Global Health International Congress&2017 Chinese Preventive M edicine Association-Chinese Society on Global Health Annual Meeting"was held on Septem ber 24-27,2017 in Xi’an,China.Thus far,this is the largest high-quality international conference held in China that focused on the BRI global health issues.This article summarized the background,key sessions and topics covered during the congress,and important events,and highlights different perspectives of the BRI and global health by invited experts from China and abroad.The conference included 14 sessions(three keynote speech forums and ten scientific sessions and a research poster session)and about 100 speakers,around 40 of which were leading experts outside of China.All the major sessions were held in English.More than 40 leaders and experts of health sectors from 13 countries presented their work in the congress.Approximately 400 delegates from 29 countries attended the congress.Delegates had extensive discussions about global health related issues,future cooperation and development in global health.The congress fostered international exchange and collaboration.展开更多
CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfe...CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfer rate will be significantly enhanced.Therefore,it is necessary to explore the mass transfer enhancement mechanism further and develop a penetration/surface divergence hybrid mass transfer model.In this study,we conduct research on the process of CO_(2) absorption into ethanol with RC.Firstly,we use a multi-relaxation time lattice Boltzmann method to simulate the absorption process and obtain the flow and concentration fields.And we also verify the reliability of the numerical simulation results by comparing with the experimental results.Then,we analyze the characteristics of non-uniform flow and concentration fields in RC.Moreover,we divide the near-interface region into diffusion-dominated and convection-dominated mass transfer zones by checking whether the horizontal average velocity is greater than 1.0×10^(-4) m·s^(-1).Furthermore,based on the differences in mass transfer mechanisms of the aforementioned two zones,we propose a penetration/surface divergence hybrid model to predict the instantaneous mass transfer coefficient.The prediction results demonstrate that the hybrid model can precisely predict the instantaneous mass transfer coefficient of the entire CO_(2) absorption process.Our proposed hybrid model provides a promising way to deal with the complex mass transfer problems with non-uniform flow and concentration fields.展开更多
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure...Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.展开更多
Sorghum[Sorghum bicolor(L.)Moench],a multipurpose C4 crop,is also a model species of the Poaceae family for plant research.During the process of domestication,the modification of seed dispersal mode is considered a ke...Sorghum[Sorghum bicolor(L.)Moench],a multipurpose C4 crop,is also a model species of the Poaceae family for plant research.During the process of domestication,the modification of seed dispersal mode is considered a key event,as the loss of seed shattering caused a significant increase in yield.In order to understand the seed shattering process in sorghum,we further studied eight previously identified divergent sorghum germplasm with different shattering degrees.We described their phenotypes in great detail,analyzed the histology of abscission zone,and conducted a gene co-expression analysis.We observed that the abscission layer of the most strong-shattering varieties began to differentiate before the 5-10 cm panicles development stage and was completely formed at flag leaf unfolding.The protective cells on the pedicels were also fully lignified by flowering.Through the weighted gene correlation network analysis(WGCNA),we mined for candidate genes involved in the abscission process at the heading stage.We found that these genes were mainly associated with such biological processes as hormone signal transmission(SORBI_3003G361300,SORBI_3006G216500,SORBI_3009G027800,SORBI_3007G077200),cell wall modification and degradation(SORBI_3002G205500,SORBI_3004G013800,SORBI_3010G022400,SORBI_3003G251800,SORBI_3003G254700,SORBI_3003G410800,SORBI_3009G162700,SORBI_3001G406700,SORBI_3004G042700,SORBI_3004G244600,SORBI_3001G099100),and lignin synthesis(SORBI_3004G220700,SORBI_3004G062500,SORBI_3010G214900,SORBI_3009G181800).Our study has provided candidate genes required for shedding for further study.We believe that function characterization of these genes may provide insight into our understanding of seed shattering process.展开更多
Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular a...Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications.展开更多
Extracellular vesicles(EVs)show potential for early diagnosis of Alzheimer’s disease(AD)and monitoring of its progression.However,EV-based AD diagnosis faces challenges due to the small size and low abundance of biom...Extracellular vesicles(EVs)show potential for early diagnosis of Alzheimer’s disease(AD)and monitoring of its progression.However,EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers.Here,we report a fully integrated organic electrochemical transistor(OECT)sensor for ultrafast,accurate,and convenient point-of-care testing(POCT)of serum EVs from AD patients.By utilizing acoustoelectric enrichment,the EVs can be quickly propelled,significantly enriched,and specifically bound to the OECT detection area,achieving a gain of over 280 times response in 30 s.The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes.Furthermore,the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse AβEVs at different time courses(up to 18 months)and compared with the Aβaccumulation using high-resolution magnetic resonance imaging(MRI).This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer’s and other neurodegenerative diseases,and monitoring of disease progression and treatment response.展开更多
To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an access...To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an accession of common wild rice (Oryza rufipogon Griff.) from Dongxiang in Jiangxi Province of China, as the donor, and a high-yielding Indica cultivar (O. sativa L.), 'Guichao 2', as the recipient, was used to identify quantitative trait loci (QTL) associated with yield and its components. Based on the analysis for the genotype of BC4F1 population with 87 SSR markers distributed throughout the genome and investigation of the plant height, yield and yield components of BC4F2, a total of 52 QTLs, were detected. Of 7 QTLs associated with grain yield per plant, 2 QTLs on chromosome 2 and chromosome 11 for grain yield, explaining 16% and 11% of the phenotypic variance respectively, were identified. The alleles from Dongxiang common wild rice in those two loci could increase the yield of 'Guichao 2' by展开更多
The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement.Although several genes regulating rice plant architecture have been characterized,the molecular mechanism...The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement.Although several genes regulating rice plant architecture have been characterized,the molecular mechanisms underlying rice plant architecture domestication remain largely unclear.Here we show that the inclined tiller growth in wild rice is controlled by a single dominant gene,TILLER INCLINED GROWTH 1 (T/Gf),which is located on chromosome 8 and encodes a TCP transcriptional activator.TIG1 is primarily expressed in the adaxial side of the tiller base,promotes cell elongation,and enlarges the tiller angle in wild rice.Variations in the TIG1 promoter of indica cultivars {tig1 allele) resulted in decreased expression of TIG1 in the adaxial side of tiller base and reduced cell length and tiller angle,leading to the transition from inclined tiller growth in wild rice to erect tiller growth during rice domestication.TIG1 positively regulates the expression of EXP A3,EXPB5,and SAUR39 to promote cell elongation and increase the tiller angle.Selective sweep analysis revealed that the tig1 allele was selected in indica cultivars by human beings.The cloning and characterization of TIG1 supports a new scenario of plant architecture evolution in rice.展开更多
Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of t...Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehdl, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehdl, Hd3a and RFT1 under long-day conditions.展开更多
Having reviewed the major classification systems proposed by various scholars across the world, it is found that \%indica\% and \%japonica\% under \%O.sativa\% L. are two major directions thoroughly differentiated fro...Having reviewed the major classification systems proposed by various scholars across the world, it is found that \%indica\% and \%japonica\% under \%O.sativa\% L. are two major directions thoroughly differentiated from the Asian cultivated rice, forming the framework of the classification structure. A system with \%indica\% and \%japonica\% as the only two subspecies is therefore reiterated.There are various ways to determine the indica_japonica identity of hybrid rice, but the "combined morphological trait index"(CMT index) method is more efficient and easier to handle, although the isozyme analysis, molecular marker analysis and grain quality assay methods are also feasible.展开更多
rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95...rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95rhm) and susceptible parents (H95) of maize (Zea mays) were constructed. Using newly developed markers, rhml was initially delimited within an interval of 2.5 Mb, and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149--1. Three polymorphic markers IDP961-504, IDP B2-3 and A194149-2 were shown to be co-segregated with the rhml locus. Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1). Comparative sequence analysis indicated that the LHT1 in H95rhrn harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73, H95 and Mo17. The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95rhm). Our results strongly suggest LHTI as the candidate gene for rhml against SCLB. The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.展开更多
Domestication and diversification have had profound effects on crop genomes.Originating in Africa and subsequently spreading to different continents,sorghum(Sorghum bicolor)has experienced multiple onsets of domestica...Domestication and diversification have had profound effects on crop genomes.Originating in Africa and subsequently spreading to different continents,sorghum(Sorghum bicolor)has experienced multiple onsets of domestication and intensive breeding selection for various end uses.However,how these processes have shaped sorghum genomes is not fully understood.In the present study,population genomics analyses were performed on a worldwide collection of 445 sorghum accessions,covering wild sorghum and four end-use subpopulations with diverse agronomic traits.Frequent genetic exchanges were found among various subpopulations,and strong selective sweeps affected 14.68%(∼107.5 Mb)of the sorghum genome,including 3649,4287,and 3888 genes during sorghum domestication,improvement of grain sorghum,and improvement of sweet sorghum,respectively.Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed,and Sh1-and SbTB1-type genes were representative of two prominent models,one of soft selection or multiple origins and one of hard selection or an early single domestication event.We also demonstrated that the Dry gene,which regulates stem juiciness,was unconsciously selected during the improvement of grain sorghum.Taken together,these findings provide new genomic insights into sorghum domestication and breeding selection,and will facilitate further dissection of the domestication and molecular breeding of sorghum.展开更多
The following new research progresses are summarized and discussed, which are related to 3 main problems in origin of rice cultivation in China: 1. new hypothesis of rice cultivation in Chinamiddle Yangtze River and u...The following new research progresses are summarized and discussed, which are related to 3 main problems in origin of rice cultivation in China: 1. new hypothesis of rice cultivation in Chinamiddle Yangtze River and upper Huai River regions; 2. primitive cultivated rice and the strengthen period of domestication; 3. genetic diversity centers of cultivated rice in China; 4. China and South Asia might be two independent systems of origin and differentiation of Asian cultivated rice; 5. morphological classification of common wild rice of China; 6. primitive progenitor of common wild rice; 7. direct progenitor of cultivated rice; 8. present or not the annual wild rice in China; 9. differentiation or not the common wild rice into Indica and Japonica; 10. origin and differentiation of Indica and Japonica.展开更多
Tillering contributes to grain yield and plant architecture and therefore is an agronomically important trait in sorghum (Sorghum bicolor). Here, we identified and functionally characterized a mutant of the Non- dor...Tillering contributes to grain yield and plant architecture and therefore is an agronomically important trait in sorghum (Sorghum bicolor). Here, we identified and functionally characterized a mutant of the Non- dormant Axillary Bud 1 (NAB1) gene from an ethyl methanesulfonate-mutagenized sorghum population. The nab1 mutants have increased tillering and reduced plant height. Map-based cloning revealed that NAB~ encodes a carotenoid-cleavage dioxygenase 7 (CCDT) orthologous to rice COryza sativa) HIGH-TILLERING DWARF1/ DWARF^7 and Arabidopsis thaliana MORE AXILLARY BRANCHING 3. NAB1 is primarily expressed in axillary nodes and tiller bases and NAB1 localizes to chloroplasts. The nab1 mutation causes outgrowth of basal axillary buds; removing these non-dormant basal axillary buds restoredthe wild-type phenotype. The tillering of nab1 plants was completely suppressed by exogenous application of the synthetic strigolactone analog GR24. Moreover, the nab1 plants had no detectable strigolactones and displayed stronger polar auxin transport than wild-type plants. Finally, RNA-seq showed that the expression of genes involved in multiple processes, including auxin-related genes, was significantly altered in nab1. These results suggest that NAB1 functions in strigolactone biosynthesis and the regulation of shoot branching via an interaction with auxin transport.展开更多
A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power o...A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.展开更多
pioids are commonly used for treating chronic pain.However,with continued use,they may induce tolerance and/or hyperalgesia,which limits therapeutic efficacy.The human mechanisms of opioid-induced tolerance and hypera...pioids are commonly used for treating chronic pain.However,with continued use,they may induce tolerance and/or hyperalgesia,which limits therapeutic efficacy.The human mechanisms of opioid-induced tolerance and hyperalgesia are significantly understudied,in part,because current models cannot fully recapitulate human pathology.Here,we engineered novel human spinal microphysiological systems(MPSs)integrated with plug-and-play neural activity sensing for modeling human nociception and opioid-induced tolerance.Each spinal MPS consists of a flattened human spinal cord organoid derived from human stem cells and a 3D printed organoid holder device for plug-and-play neural activity measurement.We found that the flattened organoid design of MPSs not only reduces hypoxia and necrosis in the organoids,but also promotes their neuron maturation,neural activity,and functional development.We further demonstrated that prolonged opioid exposure resulted in neurochemical correlates of opioid tolerance and hyperalgesia,as measured by altered neural activity,and downregulation ofμ-opioid receptor expression of human spinal MPSs.The MPSs are scalable,cost-effective,easy-to-use,and compatible with commonly-used well-plates,thus allowing plug-and-play measurements of neural activity.We believe the MPSs hold a promising translational potential for studying human pain etiology,screening new treatments,and validating novel therapeutics for human pain medicine.展开更多
基金supported by the Key Technologies R&D Program of Xiamen(No.3502Z20231057)the Natural Science Foundation of Fujian Province,China(No.2024J011210,No.2021J011214,No.2021J01685)+5 种基金the High-Level Talent Start-Up Foundation of Xiamen Institute of Technology for financial support(No.YKJ23017R)the Industry Leading Key Projects of Fujian Province(No.2022H0057)the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang(2020R01002)the Fujian Young and Middle-aged Teachers Teacher Education Research Project(Science and Technology)(No.JAT200461)2023 Xiamen Overseas Students Scientific Research Project(Start-up)the National Natural Science Foundation of China(No.21975212,No.22101242,No.52002352,No.52071295)。
文摘Traditional pyrometallurgy and hydrometallurgy processes primarily focus on the recovery of valuable metals(Co,Ni,etc.)from spent lithium-ion batteries.However,these methods are not economical for recycling cheap LiFePO_(4).Herein,a synergistic thermal-decomposition and electric-drive strategy is proposed to recover the whole spent LiFePO_(4)electrode by in-situ recovering the inactive lithium(dead lithium and trapped interlayer lithium).Firstly,the organic components in the dense solid electrolyte interface(SEI)are effectively decomposed through thermal-decomposition processing,exposing the dead lithium encapsulated within the SEI and recovering the electron channels between the dead lithium and graphite.Leveraging the difference between the Gibbs free energy of the dead lithium and graphite as the driving force facilitates the dead lithium inserting into the anode.Then,fully utilizing the remaining discharge capacity of the spent LiFePO_(4)cell,the inactive lithium is reinserted into LiFePO_(4)lattice during the electric-drive process.Consequently,the reactivated lithium content increases by more than 16%,reaching a capacity of 134.2 mA h g^(-1)compared to 115.2 mA h g^(-1)from degraded LiFePO_(4),allowing for effective participation in the subsequent cycling.This work provides new perspectives on highly profitable cycles with low energy and material consumption and a low carbon footprint.
基金supported by the National Basic Research Program of China(Grant No.2011CB100201)the National Natural Science Foundation(Grant No.30930057)the Chang Jiang Scholars Program
文摘Tiller angle is a key feature of the architecture of cultivated rice (Oryza sativa), since it determines planting density and influences rice yield. Our previous work identified Tiller Angle Control 1 (TACI) as a major quantitative trait locus that controls rice filler angle. To further clarify the evolutionary characterization of the TAC1 gene, we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice, including 43 accessions of O. rufipogon and five accessions of O. nivara. Only one single nucleotide polymorphism (SNP), a synonymous substitution, was detected in TAC1 coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TAC1 coding regions of wild rice accessions. These data indicate that little natural mutation and modification in the TAC1 coding region occurred within the cultivated rice and its progenitor during evolution. Nucleotide diversities in the TAC1 gene regions of O. sativa and O. rufipogon of 0.00116 and 0.00112, respectively, further indicate that TAC1 has been highly conserved during the course of rice domestication. A functional nucleotide polymorphism (FNP) of TAC1 was only found in the japonica rice group. A neutrality test revealed strong selection, especially in the 3'-flanking region of the TAC1 coding region containing the FNP in the japonica rice group. However, no selection occurred in the indica and wild-rice groups. A phylogenetic tree derived from TAC1 sequence analysis suggests that the indica and japonica subspecies arose indepen- dently during the domestication of wild rice.
基金supported by grants from the Project of Conservation and Utilization of Agro-Wild Plants of the Ministry of Agriculture of Chinathe National High-Tech Research and Development ("863") Program of China (No. 2006AA100101)the "111" Project (No. B06003)
文摘Using an accession of common wild rice (Oryza rufipogon Griff.) collected from Yuanjiang County, Yunnan Province, China, as the donor and an elite cultivar 93-11, widely used in two-line indica hybrid rice production in China, as the recurrent parent, an advanced backcross populations were developed. Through genotyping of 187 SSR markers and investigation of six yield-related traits of two gen- erations (BC4F2 and BC4F4), a total of 26 QTLs were detected by employing single point analysis and interval mapping in both genera-tions. Of the 26 QTLs, the alleles of 10 (38.5%) QTLs originating from O. rufipogon had shown a beneficial effect for yield-related traits in the 93-11 genetic background. In addition, five QTLs controlling yield and its components were newly identified, indicating that there are potentially novel alleles in Yuanjiang common wild rice. Three regions underling significant QTLs for several yield-related traits were detected on chromosome 1, 7 and 12. The QTL clusters were founded and corresponding agronomic traits of those QTLs showed highly significant correlation, suggesting the pleiotropism or tight linkage. Fine-mapping and cloning of these yield-related QTLs from wild rice would be helpful to elucidating molecular mechanism of rice domestication and rice breeding in the future.
文摘With the rapid development of new technologies and global trade and increasing collaboration am ong countries worldwide,public health has become a global issue.Global health,as a new discipline,has been drawing more attention from both academ ia and governments.The Belt and Road Initiative(BRI),proposed by China in 2013,aimed to prom ote trade and resource exchange,including education,research,and health issues,with over 60 countries in Asia,Africa,and Europe.The BRI provides good opportunities for involved countries to address health problems jointly as well.In response to the BRI and to promote international collaboration on global health issues,"The 2017 Belt and Road Initiative Global Health International Congress&2017 Chinese Preventive M edicine Association-Chinese Society on Global Health Annual Meeting"was held on Septem ber 24-27,2017 in Xi’an,China.Thus far,this is the largest high-quality international conference held in China that focused on the BRI global health issues.This article summarized the background,key sessions and topics covered during the congress,and important events,and highlights different perspectives of the BRI and global health by invited experts from China and abroad.The conference included 14 sessions(three keynote speech forums and ten scientific sessions and a research poster session)and about 100 speakers,around 40 of which were leading experts outside of China.All the major sessions were held in English.More than 40 leaders and experts of health sectors from 13 countries presented their work in the congress.Approximately 400 delegates from 29 countries attended the congress.Delegates had extensive discussions about global health related issues,future cooperation and development in global health.The congress fostered international exchange and collaboration.
基金the financial support of the National Natural Science Foundation of China(21706182)。
文摘CO_(2) absorption into absorbents is a widely used method to reduce carbon emissions,in which the concentration gradient near the gas-liquid interface may induce Rayleigh convection(RC).Once RC occurs,the mass transfer rate will be significantly enhanced.Therefore,it is necessary to explore the mass transfer enhancement mechanism further and develop a penetration/surface divergence hybrid mass transfer model.In this study,we conduct research on the process of CO_(2) absorption into ethanol with RC.Firstly,we use a multi-relaxation time lattice Boltzmann method to simulate the absorption process and obtain the flow and concentration fields.And we also verify the reliability of the numerical simulation results by comparing with the experimental results.Then,we analyze the characteristics of non-uniform flow and concentration fields in RC.Moreover,we divide the near-interface region into diffusion-dominated and convection-dominated mass transfer zones by checking whether the horizontal average velocity is greater than 1.0×10^(-4) m·s^(-1).Furthermore,based on the differences in mass transfer mechanisms of the aforementioned two zones,we propose a penetration/surface divergence hybrid model to predict the instantaneous mass transfer coefficient.The prediction results demonstrate that the hybrid model can precisely predict the instantaneous mass transfer coefficient of the entire CO_(2) absorption process.Our proposed hybrid model provides a promising way to deal with the complex mass transfer problems with non-uniform flow and concentration fields.
基金the National Natural Science Foundation of China(21975212)the Industry Leading Key Projects of Fujian Province(2022H0057)the High-level talent start-up Foundation of Xiamen Institute of Technology for financial support。
文摘Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.
基金supported by the National Key Research and Development Program of China(2018YFD1000706,2018YFD1000700).
文摘Sorghum[Sorghum bicolor(L.)Moench],a multipurpose C4 crop,is also a model species of the Poaceae family for plant research.During the process of domestication,the modification of seed dispersal mode is considered a key event,as the loss of seed shattering caused a significant increase in yield.In order to understand the seed shattering process in sorghum,we further studied eight previously identified divergent sorghum germplasm with different shattering degrees.We described their phenotypes in great detail,analyzed the histology of abscission zone,and conducted a gene co-expression analysis.We observed that the abscission layer of the most strong-shattering varieties began to differentiate before the 5-10 cm panicles development stage and was completely formed at flag leaf unfolding.The protective cells on the pedicels were also fully lignified by flowering.Through the weighted gene correlation network analysis(WGCNA),we mined for candidate genes involved in the abscission process at the heading stage.We found that these genes were mainly associated with such biological processes as hormone signal transmission(SORBI_3003G361300,SORBI_3006G216500,SORBI_3009G027800,SORBI_3007G077200),cell wall modification and degradation(SORBI_3002G205500,SORBI_3004G013800,SORBI_3010G022400,SORBI_3003G251800,SORBI_3003G254700,SORBI_3003G410800,SORBI_3009G162700,SORBI_3001G406700,SORBI_3004G042700,SORBI_3004G244600,SORBI_3001G099100),and lignin synthesis(SORBI_3004G220700,SORBI_3004G062500,SORBI_3010G214900,SORBI_3009G181800).Our study has provided candidate genes required for shedding for further study.We believe that function characterization of these genes may provide insight into our understanding of seed shattering process.
基金supported by the National Institutes of Health(awards DP2AI160242 and U01DA056242).
文摘Human brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological,psychiatric,and developmental disorders.While the molecular and cellular aspects of human brain organoids have been intensively studied,their functional properties such as organoid neural networks(ONNs)are largely understudied.Here,we summarize recent research advances in understanding,characterization,and application of functional ONNs in human brain organoids.We first discuss the formation of ONNs and follow up with characterization strategies including microelectrode array(MEA)technology and calcium imaging.Moreover,we highlight recent studies utilizing ONNs to investigate neurological diseases such as Rett syndrome and Alzheimer’s disease.Finally,we provide our perspectives on the future challenges and opportunities for using ONNs in basic research and translational applications.
基金F.G.acknowledges the National Institute of Health Awards(R01DK133864,DP2AI160242,and U01DA056242).
文摘Extracellular vesicles(EVs)show potential for early diagnosis of Alzheimer’s disease(AD)and monitoring of its progression.However,EV-based AD diagnosis faces challenges due to the small size and low abundance of biomarkers.Here,we report a fully integrated organic electrochemical transistor(OECT)sensor for ultrafast,accurate,and convenient point-of-care testing(POCT)of serum EVs from AD patients.By utilizing acoustoelectric enrichment,the EVs can be quickly propelled,significantly enriched,and specifically bound to the OECT detection area,achieving a gain of over 280 times response in 30 s.The integrated POCT sensor can detect serum EVs from AD patients with a limit of detection as low as 500 EV particles/mL and a reduced detection time of just two minutes.Furthermore,the integrated POCT sensors were used to monitor AD progression in an AD mouse model by testing the mouse AβEVs at different time courses(up to 18 months)and compared with the Aβaccumulation using high-resolution magnetic resonance imaging(MRI).This innovative technology has the potential for accurate and rapid diagnosis of Alzheimer’s and other neurodegenerative diseases,and monitoring of disease progression and treatment response.
基金This work was supported by the "973" Project (Grant No. 2001CB108800)China National High-Tech Research and Development Program ("863" Program)the National Tackle Key Problem Project of the Ministry of Science and Technology of China.
文摘To identify useful genes from wild rice which have been lost or weakened in cultivated rice has become more and more important for modern breeding strategy. In this study, a BC4 population derived from 94W1, an accession of common wild rice (Oryza rufipogon Griff.) from Dongxiang in Jiangxi Province of China, as the donor, and a high-yielding Indica cultivar (O. sativa L.), 'Guichao 2', as the recipient, was used to identify quantitative trait loci (QTL) associated with yield and its components. Based on the analysis for the genotype of BC4F1 population with 87 SSR markers distributed throughout the genome and investigation of the plant height, yield and yield components of BC4F2, a total of 52 QTLs, were detected. Of 7 QTLs associated with grain yield per plant, 2 QTLs on chromosome 2 and chromosome 11 for grain yield, explaining 16% and 11% of the phenotypic variance respectively, were identified. The alleles from Dongxiang common wild rice in those two loci could increase the yield of 'Guichao 2' by
基金supported by the National Key R&D Program for Crop Breeding (2016YFD0100301)National Natural Science Foundation of China (grant 91335202 and grant 91535301).
文摘The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement.Although several genes regulating rice plant architecture have been characterized,the molecular mechanisms underlying rice plant architecture domestication remain largely unclear.Here we show that the inclined tiller growth in wild rice is controlled by a single dominant gene,TILLER INCLINED GROWTH 1 (T/Gf),which is located on chromosome 8 and encodes a TCP transcriptional activator.TIG1 is primarily expressed in the adaxial side of the tiller base,promotes cell elongation,and enlarges the tiller angle in wild rice.Variations in the TIG1 promoter of indica cultivars {tig1 allele) resulted in decreased expression of TIG1 in the adaxial side of tiller base and reduced cell length and tiller angle,leading to the transition from inclined tiller growth in wild rice to erect tiller growth during rice domestication.TIG1 positively regulates the expression of EXP A3,EXPB5,and SAUR39 to promote cell elongation and increase the tiller angle.Selective sweep analysis revealed that the tig1 allele was selected in indica cultivars by human beings.The cloning and characterization of TIG1 supports a new scenario of plant architecture evolution in rice.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201003021)the Project of Conservation and Utilization of Agricultural Wild Plants of the Ministry of Agriculture of Chinathe National High-Tech Research and Development(863)Program of China(2012AA101103)
文摘Flowering at suitable time is very important for plants to adapt to complicated environments and produce their seeds successfully for reproduction. In rice (Oryza rufipogon Griff.) photoperiod regulation is one of the important factors for controlling heading date. Common wild rice, the ancestor of cultivated rice, exhibits a late heading date and a more sensitive photoperiodic response than cultivated rice. Here, through map-based cloning, we identified a major quantitative trait loci (QTL) LHD1 (Late Heading Date 1), an allele of DTH8/Ghd8, which controls the late heading date of wild rice and encodes a putative HAP3/NF-YB/CBF-A subunit of the CCAAT-box-binding transcription factor. Sequence analysis revealed that several variants in the coding region of LHD1 were correlated with a late heading date, and a further complementary study successfully rescued the phenotype. These results suggest that a functional site for LHD1 could be among those variants present in the coding region. We also found that LHD1 could down-regulate the expression of several floral transition activators such as Ehdl, Hd3a and RFT1 under long-day conditions, but not under short-day conditions. This indicates that LHD1 may delay flowering by repressing the expression of Ehdl, Hd3a and RFT1 under long-day conditions.
文摘Having reviewed the major classification systems proposed by various scholars across the world, it is found that \%indica\% and \%japonica\% under \%O.sativa\% L. are two major directions thoroughly differentiated from the Asian cultivated rice, forming the framework of the classification structure. A system with \%indica\% and \%japonica\% as the only two subspecies is therefore reiterated.There are various ways to determine the indica_japonica identity of hybrid rice, but the "combined morphological trait index"(CMT index) method is more efficient and easier to handle, although the isozyme analysis, molecular marker analysis and grain quality assay methods are also feasible.
基金supported by the National Key Basic Research Program of China (973 Program,2009CB118400)
文摘rhml is a major recessive disease resistance locus for Southern corn leaf blight (SCLB). To further narrow down its genetic position, F2 population and BCIFI population derived from the cross between resistant (H95rhm) and susceptible parents (H95) of maize (Zea mays) were constructed. Using newly developed markers, rhml was initially delimited within an interval of 2.5 Mb, and then finally mapped to a 8.56 kb interval between InDel marker IDP961-503 and simple sequence repeat (SSR) marker A194149--1. Three polymorphic markers IDP961-504, IDP B2-3 and A194149-2 were shown to be co-segregated with the rhml locus. Sequence analysis of the 8.56 kb DNA fragment revealed that it contained only one putative gene with a predicted amino acid sequence identical to lysine histidine transporter 1 (LHT1). Comparative sequence analysis indicated that the LHT1 in H95rhrn harbors a 354 bp insertion in its third exon as compared with that of susceptible alleles in B73, H95 and Mo17. The 354 bp insertion resulted in a truncation of the predicted protein of candidate resistance allele (LHT1-H95rhm). Our results strongly suggest LHTI as the candidate gene for rhml against SCLB. The tightly linked molecular markers developed in this study can be directly used for molecular breeding of resistance to Southern corn leaf blight in maize.
基金This research was supported by the National Key R&D Program of China(2018YFD1000701 and 2019YFD1002701)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26050101).
文摘Domestication and diversification have had profound effects on crop genomes.Originating in Africa and subsequently spreading to different continents,sorghum(Sorghum bicolor)has experienced multiple onsets of domestication and intensive breeding selection for various end uses.However,how these processes have shaped sorghum genomes is not fully understood.In the present study,population genomics analyses were performed on a worldwide collection of 445 sorghum accessions,covering wild sorghum and four end-use subpopulations with diverse agronomic traits.Frequent genetic exchanges were found among various subpopulations,and strong selective sweeps affected 14.68%(∼107.5 Mb)of the sorghum genome,including 3649,4287,and 3888 genes during sorghum domestication,improvement of grain sorghum,and improvement of sweet sorghum,respectively.Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed,and Sh1-and SbTB1-type genes were representative of two prominent models,one of soft selection or multiple origins and one of hard selection or an early single domestication event.We also demonstrated that the Dry gene,which regulates stem juiciness,was unconsciously selected during the improvement of grain sorghum.Taken together,these findings provide new genomic insights into sorghum domestication and breeding selection,and will facilitate further dissection of the domestication and molecular breeding of sorghum.
文摘The following new research progresses are summarized and discussed, which are related to 3 main problems in origin of rice cultivation in China: 1. new hypothesis of rice cultivation in Chinamiddle Yangtze River and upper Huai River regions; 2. primitive cultivated rice and the strengthen period of domestication; 3. genetic diversity centers of cultivated rice in China; 4. China and South Asia might be two independent systems of origin and differentiation of Asian cultivated rice; 5. morphological classification of common wild rice of China; 6. primitive progenitor of common wild rice; 7. direct progenitor of cultivated rice; 8. present or not the annual wild rice in China; 9. differentiation or not the common wild rice into Indica and Japonica; 10. origin and differentiation of Indica and Japonica.
基金funded by grants from the National Natural Science Foundation of China(31461143023 and 31471570)the Ministry of Science and Technology of the People’s Republic of China(2015BAD15B03)to Hai-Chun Jing
文摘Tillering contributes to grain yield and plant architecture and therefore is an agronomically important trait in sorghum (Sorghum bicolor). Here, we identified and functionally characterized a mutant of the Non- dormant Axillary Bud 1 (NAB1) gene from an ethyl methanesulfonate-mutagenized sorghum population. The nab1 mutants have increased tillering and reduced plant height. Map-based cloning revealed that NAB~ encodes a carotenoid-cleavage dioxygenase 7 (CCDT) orthologous to rice COryza sativa) HIGH-TILLERING DWARF1/ DWARF^7 and Arabidopsis thaliana MORE AXILLARY BRANCHING 3. NAB1 is primarily expressed in axillary nodes and tiller bases and NAB1 localizes to chloroplasts. The nab1 mutation causes outgrowth of basal axillary buds; removing these non-dormant basal axillary buds restoredthe wild-type phenotype. The tillering of nab1 plants was completely suppressed by exogenous application of the synthetic strigolactone analog GR24. Moreover, the nab1 plants had no detectable strigolactones and displayed stronger polar auxin transport than wild-type plants. Finally, RNA-seq showed that the expression of genes involved in multiple processes, including auxin-related genes, was significantly altered in nab1. These results suggest that NAB1 functions in strigolactone biosynthesis and the regulation of shoot branching via an interaction with auxin transport.
文摘A superluminescent diode (SLD) as an alternative of laser is used to detect optical rotation for atomic spin precession. A more uniform Gauss configuration without additional beam shaping and a relatively high power of the SLD have a potential for atomic magnetometers, which is demonstrated in theory and experiments. In addition, the robustness and compactness enable a more practical way for optical rotation detections, especially for applications in magnetoencephalography systems.
基金The project was supported by the departmental start-up funds of Indiana University Bloomington,and in part by NSF grants(CCF-1909509,and CMMI-2025434)NIH awards(DP2AI160242,DA056242,and DA047858).
文摘pioids are commonly used for treating chronic pain.However,with continued use,they may induce tolerance and/or hyperalgesia,which limits therapeutic efficacy.The human mechanisms of opioid-induced tolerance and hyperalgesia are significantly understudied,in part,because current models cannot fully recapitulate human pathology.Here,we engineered novel human spinal microphysiological systems(MPSs)integrated with plug-and-play neural activity sensing for modeling human nociception and opioid-induced tolerance.Each spinal MPS consists of a flattened human spinal cord organoid derived from human stem cells and a 3D printed organoid holder device for plug-and-play neural activity measurement.We found that the flattened organoid design of MPSs not only reduces hypoxia and necrosis in the organoids,but also promotes their neuron maturation,neural activity,and functional development.We further demonstrated that prolonged opioid exposure resulted in neurochemical correlates of opioid tolerance and hyperalgesia,as measured by altered neural activity,and downregulation ofμ-opioid receptor expression of human spinal MPSs.The MPSs are scalable,cost-effective,easy-to-use,and compatible with commonly-used well-plates,thus allowing plug-and-play measurements of neural activity.We believe the MPSs hold a promising translational potential for studying human pain etiology,screening new treatments,and validating novel therapeutics for human pain medicine.