MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here...MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.展开更多
Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transpo...Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.展开更多
The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under ...The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries.展开更多
Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of S...Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of SMBs.Understanding Na deposition mechanisms,particularly the early stage of Na deposition kinetics,is critical to enable the SMBs.In this context,we conducted in situ observations of the early stage of electrochemical Na deposition.We revealed an important electrochemical Ostwald ripening(EOR)phenomenon which dictated the early stage of Na deposition.Namely,small Na nanocrystals were nucleated randomly,which then grew.During growth,smaller Na nanocrystals were contained by bigger ones via EOR.We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals;while the other being dominated by mass transport governed by surface energy minimization.The results provide new understanding to the Na deposition mechanism,which may be useful for the development of SMB for energy storage applications.展开更多
基金the National Natural Science Foundation of China(NSFC)(22105059,22279112)the Talent Introduction Program of Hebei Agricultural University(YJ201810)+5 种基金the Youth Topnotch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2022203018)the Fok Ying-Tong Education Foundation of China(171064)the Natural Science Foundation of Shandong Province,China(ZR2021QE192)the China Postdoctoral Science Foundation(2018M630747)the 333 Talent Program of Hebei Province(C20221018)for their support。
文摘MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability.
基金financially supported by the National Natural Science Foundation of China(22279112,52022088,51971245,51772262,21406191,U20A20336,21935009)the Natural Science Foundation of Hebei Province,China(B2022203018,F2021203097,B2020203037,B2018203297)+2 种基金the Hunan Innovation Team,China(2018RS3091)the Beijing Natural Science Foundation,China(2202046)the Fok Ying-Tong Education Foundation of China(171064)。
文摘Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs.
基金financial support by the National Key Research and Development Program of China (2018YFB0104300)National Natural Science Foundation of China (51772262, U20A20336, and 21935009)+6 种基金Natural Science Foundation of Hebei Province (B2020203037)Hunan Innovation Team (2018RS3091)financial support by Fok YingTong Education Foundation of China (171064)Natural Science Foundation of Hebei Province (B2018203297)financial support by the National Natural Science Foundation of China (52022088 and 51971245)Beijing Natural Science Foundation (2202046)financial support by the National Natural Science Foundation of China (51971195)。
文摘The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries.
基金the National Natural Science Foundation of China(Nos.52022088,51971245,51772262,21406191,U20A20336,and 21935009)Beijing Natural Science Foundation(No.2202046)+2 种基金Fok Ying-Tong Education Foundation of China(No.171064)Natural Science Foundation of Hebei Province(Nos.F2021203097,B2020203037,and B2018203297)Hunan Innovation Team(No.2018RS3091).
文摘Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of SMBs.Understanding Na deposition mechanisms,particularly the early stage of Na deposition kinetics,is critical to enable the SMBs.In this context,we conducted in situ observations of the early stage of electrochemical Na deposition.We revealed an important electrochemical Ostwald ripening(EOR)phenomenon which dictated the early stage of Na deposition.Namely,small Na nanocrystals were nucleated randomly,which then grew.During growth,smaller Na nanocrystals were contained by bigger ones via EOR.We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals;while the other being dominated by mass transport governed by surface energy minimization.The results provide new understanding to the Na deposition mechanism,which may be useful for the development of SMB for energy storage applications.