期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Synergy mechanism of defect engineering in MoS_(2)/FeS_(2)/C heterostructure for high-performance sodium-ion battery 被引量:3
1
作者 Linlin Ma Xiaomei Zhou +9 位作者 Jun Sun Pan Zhang Baoxiu Hou Shuaihua Zhang Ningzhao Shang Jianjun Song hongjun ye Hui Shao Yongfu Tang Xiaoxian Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期268-276,I0006,共10页
MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Here... MoS_(2) is a promising anode material in sodium-ion battery technologies for possessing high theoretical capacity.However,the sluggish Na^(+) diffusion kinetics and low electronic conductivity hinder the promises.Herein,a unique MoS_(2)/FeS_(2)/C heterojunction with abundant defects and hollow structure(MFCHHS)was constructed.The synergy of defect engineering in MoS_(2),FeS_(2),and the carbon layer of MFCHHS with a larger specific surface area provides multiple storage sites of Na^(+)corresponding to the surface-controlled process.The MoS_(2)/FeS_(2)/C heterostructure and rich defects in MoS_(2) and carbon layer lower the Na^(+) diffusion energy barrier.Additionally,the construction of MoS_(2)/FeS_(2) heterojunction promotes electron transfer at the interface,accompanying with excellent conductivity of the carbon layer to facilitate reversible electrochemical reactions.The abundant defects and mismatches at the interface of MoS_(2)/FeS_(2) and MoS_(2)/C heterojunctions could relieve lattice stress and volume change sequentially.As a result,the MFCHHS anode exhibits the high capacity of 613.1 mA h g^(-1)at 0.5 A g^(-1) and 306.1 mA h g^(-1) at 20 A g^(-1).The capacity retention of 85.0%after 1400 cycles at 5.0 A g^(-1) is achieved.The density functional theory(DFT)calculation and in situ transmission electron microscope(TEM),Raman,ex-situ X-ray photon spectroscopy(XPS)studies confirm the low volume change during intercalation/deintercalation process and the efficient Na^(+)storage in the layered structure of MoS_(2) and carbon layer,as well as the defects and heterostructures in MFCHHS.We believe this work could provide an inspiration for constructing heterojunction with abundant defects to foster fast electron and Na^(+) diffusion kinetics,resulting in excellent rate capability and cycling stability. 展开更多
关键词 Defect engineering HETEROSTRUCTURE Hollow structure Sodium-ion battery MoS_(2)/FeS_(2)
在线阅读 下载PDF
Revealing alkali metal ions transport mechanism in the atomic channels of Au@a-MnO_(2)
2
作者 Jingzhao Chen Yong Su +20 位作者 hongjun ye Yushu Tang Jitong Yan Zhiying Gao Dingding Zhu Jingming Yao Xuedong Zhang Tingting Yang Baiyu Guo Hui Li Qiushi Dai Yali Liang Jun Ma Bo Wang Haiming Sun Qiunan Liu Jing Wang Congcong Du Liqiang Zhang Yongfu Tang Jianyu Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期350-358,I0008,共10页
Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transpo... Understanding alkali metal ions’(e.g.,Li^(+)/Na^(+)/K^(+))transport mechanism is challenging but critical to improving the performance of alkali metal batteries.Herein using a-MnO_(2)nanowires as cathodes,the transport kinetics of Li^(+)/Na^(+)/K^(+)in the 2×2 channels of a-MnO_(2)with a growth direction of[001]is revealed.We show that ion radius plays a decisive role in determining the ion transport and electrochemistry.Regardless of the ion radii,Li^(+)/Na^(+)/K^(+)can all go through the 2×2 channels of a-MnO_(2),generating large stress and causing channel merging or opening.However,smaller ions such as Li^(+)and Na^(+)cannot only transport along the[001]direction but also migrate along the<110>direction to the nanowire surface;for large ion such as K^(+),diffusion along the<110>direction is prohibited.The different ion transport behavior has grand consequences in the electrochemistry of metal oxygen batteries(MOBs).For Li-O_(2)battery,Li^(+)transports uniformly to the nanowire surface,forming a uniform layer of oxide;Na^(+)also transports to the nanowire surface but may be clogged locally due to its larger radius,therefore sporadic pearl-like oxides form on the nanowire surface;K^(+)cannot transport to the nanowire surface due to its large radius,instead,it breaks the nanowire locally,causing local deposition of potassium oxides.The study provides atomic scale understanding of the alkali metal ion transport mechanism which may be harnessed to improve the performance of MOBs. 展开更多
关键词 Ion transport In-situ TEM STEM Metal oxygen batteries Metal ion batteries
在线阅读 下载PDF
In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition 被引量:4
3
作者 Tingting Yang Hui Li +11 位作者 Yongfu Tang Jingzhao Chen hongjun ye Baolin Wang Yin Zhang Congcong Du Jingming Yao Baiyu Guo Tongde Shen Liqiang Zhang Ting Zhu Jianyu Huang 《Science Bulletin》 SCIE EI CSCD 2021年第17期1754-1763,M0004,共11页
The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under ... The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries. 展开更多
关键词 Lithium whisker Solid electrolyte interphase Environmental transmission electron MICROSCOPY Lithium batteries
原文传递
In situ observation of electrochemical Ostwald ripening during sodium deposition 被引量:1
4
作者 Lin Geng Qiunan Liu +6 位作者 Jingzhao Chen Peng Jia hongjun ye Jitong Yan Liqiang Zhang Yongfu Tang Jianyu Huang 《Nano Research》 SCIE EI CSCD 2022年第3期2650-2654,共5页
Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of S... Sodium(Na)metal batteries(SMBs)using Na anode are potential“beyond lithium”electrochemical technology for future energy storage applications.However,uncontrollable Na dendrite growth has plagued the application of SMBs.Understanding Na deposition mechanisms,particularly the early stage of Na deposition kinetics,is critical to enable the SMBs.In this context,we conducted in situ observations of the early stage of electrochemical Na deposition.We revealed an important electrochemical Ostwald ripening(EOR)phenomenon which dictated the early stage of Na deposition.Namely,small Na nanocrystals were nucleated randomly,which then grew.During growth,smaller Na nanocrystals were contained by bigger ones via EOR.We observed two types of EOR with one involving only electrochemical reaction driven by electrochemical potential difference between bigger and smaller nanocrystals;while the other being dominated by mass transport governed by surface energy minimization.The results provide new understanding to the Na deposition mechanism,which may be useful for the development of SMB for energy storage applications. 展开更多
关键词 in situ Na deposition electrochemical Ostwald ripening(EOR) Na nanocrystals
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部