Calcium carbonate crystals with various morphologies have been found in a variety of biospecimens and artificially synthesized structures. Usually, the diversity in morphology can be attributed to different types of i...Calcium carbonate crystals with various morphologies have been found in a variety of biospecimens and artificially synthesized structures. Usually, the diversity in morphology can be attributed to different types of interactions between the specific crystal faces and the environment or the templates used for the growth of CaCO3 crystals. On the other hand, isotropic amorphous calcium carbonate (ACC) has been recognized as the precursor of other crystalline calcium carbonate forms for both in vivo and in vitro systems. However, here we propose a self-confined amorphous template process leading to the anisotropic growth of single-crystalline calcite nanowires. Initiated by the assembly of precipitated nanoparticles, the calcite nanowires grew via the continuous precipitation of partly crystallized ACC nanodroplets onto their tips. Then, the crystalline domains in the tip, which were generated from the partly crystallized nanodroplets, coalesced in the interior of the nanowire to form a single-crystalline core. The ACC domains were left outside and spontaneously formed a protective shell to retard the precipitation of CaCO3 onto the side surface of the nanowire and thus guided the highly anisotropic growth of nanowires as a template.展开更多
Sophisticated principles of design and material integration of biomaterials have long been a major source of inspiration for the development of artificial materials[1,2].In recent years,inspired by the multi-level arc...Sophisticated principles of design and material integration of biomaterials have long been a major source of inspiration for the development of artificial materials[1,2].In recent years,inspired by the multi-level architecture of biomineral materials such as shell nacre[3,4],tooth enamel[5],and bone[6],several strong and tough bioinspired structural materials like advanced ceramic composites and metallic alloys have been reported.展开更多
基金Acknowledgements This work was handed by the National Natural Science Foundation of China (Nos. 21521001, 21431006, 21061160492, and J1030412), the National Basic Research Program of China (Nos. 2014CB931800 and 2013CB933900), the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (Nos. 2015HSC-UE007 and 2015SRG-HSC038), and the Chinese Academy of Sciences (No. KJZD-EW-M01-1).
文摘Calcium carbonate crystals with various morphologies have been found in a variety of biospecimens and artificially synthesized structures. Usually, the diversity in morphology can be attributed to different types of interactions between the specific crystal faces and the environment or the templates used for the growth of CaCO3 crystals. On the other hand, isotropic amorphous calcium carbonate (ACC) has been recognized as the precursor of other crystalline calcium carbonate forms for both in vivo and in vitro systems. However, here we propose a self-confined amorphous template process leading to the anisotropic growth of single-crystalline calcite nanowires. Initiated by the assembly of precipitated nanoparticles, the calcite nanowires grew via the continuous precipitation of partly crystallized ACC nanodroplets onto their tips. Then, the crystalline domains in the tip, which were generated from the partly crystallized nanodroplets, coalesced in the interior of the nanowire to form a single-crystalline core. The ACC domains were left outside and spontaneously formed a protective shell to retard the precipitation of CaCO3 onto the side surface of the nanowire and thus guided the highly anisotropic growth of nanowires as a template.
文摘Sophisticated principles of design and material integration of biomaterials have long been a major source of inspiration for the development of artificial materials[1,2].In recent years,inspired by the multi-level architecture of biomineral materials such as shell nacre[3,4],tooth enamel[5],and bone[6],several strong and tough bioinspired structural materials like advanced ceramic composites and metallic alloys have been reported.