Two-dimensional(2D) transition metal dichalcogenides alloys are potential materials in the application of photodetectors over a wide spectral range due to their composition-dependent bandgaps. The study of bandgap eng...Two-dimensional(2D) transition metal dichalcogenides alloys are potential materials in the application of photodetectors over a wide spectral range due to their composition-dependent bandgaps. The study of bandgap engineering is important for the application of 2D materials in devices. Here, we grow the Mo1-xWxSe2 alloys on mica, sapphire and SiO2/Si substrates by chemical vapor deposition(CVD) method. Mo1-x Wx Se2 alloys are grown on the mica substrates by CVD method for the first time. Photoluminescence(PL) spectroscopy is used to investigate the effects of substrates and interlayer coupling force on the optical bandgaps of as-grown Mo1-xWxSe2 alloys. We find that the substrates used in this work have an ignorable effect on the optical bandgaps of as-grown Mo1-xWxSe2. The interlayer coupling effect on the optical bandgaps of as-grown Mo1-xWxSe2 is larger than the substrates effect. These findings provide a new way for the future study of the growth and physical properties of 2D alloy materials.展开更多
Two-dimensional (2D) materials have become a hot study topic in recent years due to their outstanding electronic, optical, and thermal properties. The unique band structures of strong in-plane chemical bonds and wea...Two-dimensional (2D) materials have become a hot study topic in recent years due to their outstanding electronic, optical, and thermal properties. The unique band structures of strong in-plane chemical bonds and weak out-of-plane van der Waals (vdW) interactions make 2D materials promising for nanodevices and various other applications. Raman spectroscopy is a powerful and non-destructive characterization tool to study the properties of 2D materials. In this work, we review the research on the characterization of 2D materials with Raman spectroscopy. In addition, we discuss the application of the Raman spectroscopy technique to semiconductors, superconductivity, photoelectricity, and thermoelectricity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11504111,61574060)the Projects of Science and Technology Commission of Shanghai Municipality(Nos.15JC1401800,14DZ2260800)+3 种基金the Program for Professor of Special Appointment(Eastern Scholar)the Shanghai Rising-Star Program(No.17QA1401400)the Young Elite Scientists Sponsorship(YESS)Program by CASTthe Fundamental Research Funds for the Central Universities
文摘Two-dimensional(2D) transition metal dichalcogenides alloys are potential materials in the application of photodetectors over a wide spectral range due to their composition-dependent bandgaps. The study of bandgap engineering is important for the application of 2D materials in devices. Here, we grow the Mo1-xWxSe2 alloys on mica, sapphire and SiO2/Si substrates by chemical vapor deposition(CVD) method. Mo1-x Wx Se2 alloys are grown on the mica substrates by CVD method for the first time. Photoluminescence(PL) spectroscopy is used to investigate the effects of substrates and interlayer coupling force on the optical bandgaps of as-grown Mo1-xWxSe2 alloys. We find that the substrates used in this work have an ignorable effect on the optical bandgaps of as-grown Mo1-xWxSe2. The interlayer coupling effect on the optical bandgaps of as-grown Mo1-xWxSe2 is larger than the substrates effect. These findings provide a new way for the future study of the growth and physical properties of 2D alloy materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504111,61574060,and 61574056)the Projects of Science and Technology Commission of Shanghai Municipality of China(Grant Nos.15JC1401800 and 14DZ2260800)+2 种基金the Program for Professor of Special Appointment(Eastern Scholar)Shanghai Rising-Star Program,China(Grant No.17QA1401400)the Fundamental Research Funds for the Central Universities of China
文摘Two-dimensional (2D) materials have become a hot study topic in recent years due to their outstanding electronic, optical, and thermal properties. The unique band structures of strong in-plane chemical bonds and weak out-of-plane van der Waals (vdW) interactions make 2D materials promising for nanodevices and various other applications. Raman spectroscopy is a powerful and non-destructive characterization tool to study the properties of 2D materials. In this work, we review the research on the characterization of 2D materials with Raman spectroscopy. In addition, we discuss the application of the Raman spectroscopy technique to semiconductors, superconductivity, photoelectricity, and thermoelectricity.