The mountain-plains solenoid(MPS) and boundary-layer inertial oscillation(BLO) are two typical regional forcings at the diurnal time scale. Their relative role in regulating the diurnal variations of summer rainfall o...The mountain-plains solenoid(MPS) and boundary-layer inertial oscillation(BLO) are two typical regional forcings at the diurnal time scale. Their relative role in regulating the diurnal variations of summer rainfall over North China and their change under different monsoon conditions are studied using a 19-yr archive of satellite rainfall and reanalysis data. It is shown that both a strong MPS and BLO can increase nocturnal rainfall in the North China plains but exhibit evident regional differences. The MPS-induced nocturnal rainfall is relatively confined to the plains adjacent to mountains from late night to morning, due to the upward branch of the nighttime MPS. In contrast, the BLO-induced nocturnal rainfall strengthens from early evening and is more extensive in early morning over the open plains further east. The contrasting effect in the evening is related to the convergent(divergent) easterly anomaly in the plains under the BLO(MPS). The BLO also induces the relatively strong enhancement of moisture convergence and high humidity by the southerly anomaly at late night. On strong monsoon days, the nocturnal rainfall amount associated with the MPS and BLO increases considerably in the plains.Both regional forcings become effective in regulating the rainfall diurnal cycle with enhanced moisture convergence under monsoon conditions. Their induced diurnal amplitudes of moisture convergence can be comparable to the daily mean by monsoon flow. The regional forcings thus couple with monsoon flow to strengthen rainfall in the plains, particularly from late night to morning. The results highlight that a combination of regional and large-scale forcings can strongly regulate the warm-season climate.展开更多
Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite fo...Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.展开更多
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFA0600704)the National Natural Science Foundation of China (Grant No. 41575068 and 41530530)
文摘The mountain-plains solenoid(MPS) and boundary-layer inertial oscillation(BLO) are two typical regional forcings at the diurnal time scale. Their relative role in regulating the diurnal variations of summer rainfall over North China and their change under different monsoon conditions are studied using a 19-yr archive of satellite rainfall and reanalysis data. It is shown that both a strong MPS and BLO can increase nocturnal rainfall in the North China plains but exhibit evident regional differences. The MPS-induced nocturnal rainfall is relatively confined to the plains adjacent to mountains from late night to morning, due to the upward branch of the nighttime MPS. In contrast, the BLO-induced nocturnal rainfall strengthens from early evening and is more extensive in early morning over the open plains further east. The contrasting effect in the evening is related to the convergent(divergent) easterly anomaly in the plains under the BLO(MPS). The BLO also induces the relatively strong enhancement of moisture convergence and high humidity by the southerly anomaly at late night. On strong monsoon days, the nocturnal rainfall amount associated with the MPS and BLO increases considerably in the plains.Both regional forcings become effective in regulating the rainfall diurnal cycle with enhanced moisture convergence under monsoon conditions. Their induced diurnal amplitudes of moisture convergence can be comparable to the daily mean by monsoon flow. The regional forcings thus couple with monsoon flow to strengthen rainfall in the plains, particularly from late night to morning. The results highlight that a combination of regional and large-scale forcings can strongly regulate the warm-season climate.
基金Project(2023YFC3905904)supported by the National Key Research and Development Program,ChinaProject(2220197000221)supported by the Team of Foshan National Hi-Tech Industrial Development Zone Industrialization Entrepreneurial Teams Program,ChinaProject(2024ZZTS0373)supported by the Central South University Graduate Student Autonomous Exploration Innovative Programme,China。
文摘Lithium metal stands out as an exceptionally promising anode material,boasting an extraordinarily high theoretical capacity and impressive energy density.Despite these advantageous characters,the issues of dendrite formation and volume expansion of lithium metal anodes lead to performance decay and safety concerns,significantly impeding their advancement towards widespread commercial viability.Herein,a lithium-rich Li-B-In composite anode with abundant lithophilic sites and outstanding structural stability is reported to address the mentioned challenges.The evenly distributed Li-In alloy in the bulk phase of anodes act as mixed ion/electron conductors and nucleation sites,facilitating accelerated Li ions transport dynamics and suppressing lithium dendrite formation.Additionally,these micron-sized Li-In particles in LiB fibers framework can enhance overall structural integrity and provide sufficient interior space to accommodate the volume changes during cycling.The electrochemical performance of Li-B-In composite anode exhibits long-term cyclability,superior rate performance and high-capacity retention.This work confirms that the synergy between a 3 D skeleton and hetero-metallic lithiophilic sites can achieve stable and durable lithium metal anodes,offering innovative insights for the practical deployment of lithium metal batteries.