采用增长模培育(Breeding of Growing Modes,BGM)法开展有限区域模式短期集合预报研究,亟需解决的问题是集合预报扰动的发展及演变。因此论文结合经典的适时缩放培育思想,利用增长模培育法,基于WRF3.6模式(采用WRF-ARW),开发和构建了一...采用增长模培育(Breeding of Growing Modes,BGM)法开展有限区域模式短期集合预报研究,亟需解决的问题是集合预报扰动的发展及演变。因此论文结合经典的适时缩放培育思想,利用增长模培育法,基于WRF3.6模式(采用WRF-ARW),开发和构建了一个包含水平风场、垂直速度、位温扰动、位势扰动和水汽混合比共6个基本物理量的区域短期集合预报系统(WRF-EPS)。在此基础上,以2016年6月整月我国南方大范围暴雨为样例,针对扰动发展与演变的典型问题进行了探讨。试验结果表明:1)模式大气高、中、低三层的物理量扰动增长可以分为两个阶段,第一阶段为扰动快速线性增长,该阶段内扰动快速完成全部涨幅;第二阶段为非线性稳定阶段,从快速线性增长过渡到非线性稳定阶段大约需要24 h。2)各物理量的扰动增长率、相关系数以及增长模进入非线性稳定阶段的时间大致相同,但对于同一等压面不同物理量或同一物理量不同等压面,每个参数达到非线性稳定后的数值大小及演变规律存在差异,且随时间演变均伴有日内振荡现象。3)对于扰动振幅相同但初始随机模态不同的初值集合,不同随机模态对扰动培育的影响主要是在扰动的非线性稳定阶段,而在快速的线性增长阶段,它们之间的差异很小。4)对于初始随机模态相同但振幅不同的初值集合,不同扰动振幅对扰动演变的影响主要是在扰动的快速线性增长阶段,而在非线性稳定阶段,它们之间的差异很小,并且不同初始振幅对扰动进入非线性稳定阶段的时间基本没有影响。展开更多
基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and L...基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and Location)检验,结合预报成功指数(Threat Score,TS)、公平成功指数(Equitable Threat Score,ETS)评分等评分结果进行对比分析,综合评估集合预报成员的预报效果,表明:1)基于局地增长模培育法生成初始扰动的集合预报系统成员对于强降水预报有一定优势,在降水强度和位置的预报上与实况较接近;2)经检验,成员e003的TS和ETS评分在20日00时—21日00时(北京时,下同)和21日08时—22日08时两个强降水时段内表现最佳,并在SAL检验中对应较好的降雨强度A和雨区位置L,而成员e008暴雨TS、ETS评分最低,对应SAL检验中具有一定的位置偏差,即TS、ETS评分和SAL检验之间存在相关性,将二者有机结合,可以为业务工作中定量评估模式降水预报效果提供参考;3)通过对比整体评分表现较好的成员e003和较差的成员e008,两者预报的位势高度场与ERA5(ECMWF reanalysis v5,ERA5)再分析资料之间的差值,可以验证降水预报误差主要源于对低涡系统的预报偏差,同时预报评分较好的成员其位势高度偏差较小,综合评估效果更佳。展开更多
Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensembl...Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensemble mean prediction have been studied.The results show that the climate mean and standard deviation provided by a new computing paradigm by means of introduction of the proper stochastic forcing into numerical model integration process are closer to that of the true value than that made by the non-stochastic forcing.In other words,numerical model integration process with stochastic forcing has positive effect on the model climate state,and the effect is found to be positive mainly in the long lead time.Meanwhile,with respect to ensemble forecast effect yielded by white noise stochastic forcing,most results are better than those provided by no-stochastic forcing,and improvements pertaining to white noise stochastic forcing vary non-monotonically with the increase of the size of white noise.Moreover,the effects made by the identical white noise stochastic forcing also are different in various non-linear systems.With respect to EPS effect yielded by red noise stochastic forcing,most results are better than those provided by no-stochastic forcing,but only a part of ensemble forecast effect influenced by red noise is superior to that influenced by white noise.Finally,improvements pertaining to red noise stochastic forcing vary non-symmetrically and non-monotonically with the distribution of coefficientΦ.Besides,the selection of correlation coefficientΦis also dependent on non-linear models.展开更多
文摘采用增长模培育(Breeding of Growing Modes,BGM)法开展有限区域模式短期集合预报研究,亟需解决的问题是集合预报扰动的发展及演变。因此论文结合经典的适时缩放培育思想,利用增长模培育法,基于WRF3.6模式(采用WRF-ARW),开发和构建了一个包含水平风场、垂直速度、位温扰动、位势扰动和水汽混合比共6个基本物理量的区域短期集合预报系统(WRF-EPS)。在此基础上,以2016年6月整月我国南方大范围暴雨为样例,针对扰动发展与演变的典型问题进行了探讨。试验结果表明:1)模式大气高、中、低三层的物理量扰动增长可以分为两个阶段,第一阶段为扰动快速线性增长,该阶段内扰动快速完成全部涨幅;第二阶段为非线性稳定阶段,从快速线性增长过渡到非线性稳定阶段大约需要24 h。2)各物理量的扰动增长率、相关系数以及增长模进入非线性稳定阶段的时间大致相同,但对于同一等压面不同物理量或同一物理量不同等压面,每个参数达到非线性稳定后的数值大小及演变规律存在差异,且随时间演变均伴有日内振荡现象。3)对于扰动振幅相同但初始随机模态不同的初值集合,不同随机模态对扰动培育的影响主要是在扰动的非线性稳定阶段,而在快速的线性增长阶段,它们之间的差异很小。4)对于初始随机模态相同但振幅不同的初值集合,不同扰动振幅对扰动演变的影响主要是在扰动的快速线性增长阶段,而在非线性稳定阶段,它们之间的差异很小,并且不同初始振幅对扰动进入非线性稳定阶段的时间基本没有影响。
文摘基于WRF(Weather Research and Forecasting)模式,选取河南“21·7”特大暴雨事件,采用局地增长模培育法(Local Breeding Growth Mode,LBGM)生成对流尺度集合预报系统,在此基础上对24 h累积降水量进行SAL(Structure,Amplitude and Location)检验,结合预报成功指数(Threat Score,TS)、公平成功指数(Equitable Threat Score,ETS)评分等评分结果进行对比分析,综合评估集合预报成员的预报效果,表明:1)基于局地增长模培育法生成初始扰动的集合预报系统成员对于强降水预报有一定优势,在降水强度和位置的预报上与实况较接近;2)经检验,成员e003的TS和ETS评分在20日00时—21日00时(北京时,下同)和21日08时—22日08时两个强降水时段内表现最佳,并在SAL检验中对应较好的降雨强度A和雨区位置L,而成员e008暴雨TS、ETS评分最低,对应SAL检验中具有一定的位置偏差,即TS、ETS评分和SAL检验之间存在相关性,将二者有机结合,可以为业务工作中定量评估模式降水预报效果提供参考;3)通过对比整体评分表现较好的成员e003和较差的成员e008,两者预报的位势高度场与ERA5(ECMWF reanalysis v5,ERA5)再分析资料之间的差值,可以验证降水预报误差主要源于对低涡系统的预报偏差,同时预报评分较好的成员其位势高度偏差较小,综合评估效果更佳。
基金Supported by National Natural Science Foundation of China(41205073,41275099)General Program of Nanjing Joint Center of Atmospheric Research(NJCAR2016MS02)
文摘Based on the dynamic framework of Lorenz 96 model,the ensemble prediction system(EPS)containing stochastic forcing has been developed.In this system,effects of stochastic forcing on the model climate state and ensemble mean prediction have been studied.The results show that the climate mean and standard deviation provided by a new computing paradigm by means of introduction of the proper stochastic forcing into numerical model integration process are closer to that of the true value than that made by the non-stochastic forcing.In other words,numerical model integration process with stochastic forcing has positive effect on the model climate state,and the effect is found to be positive mainly in the long lead time.Meanwhile,with respect to ensemble forecast effect yielded by white noise stochastic forcing,most results are better than those provided by no-stochastic forcing,and improvements pertaining to white noise stochastic forcing vary non-monotonically with the increase of the size of white noise.Moreover,the effects made by the identical white noise stochastic forcing also are different in various non-linear systems.With respect to EPS effect yielded by red noise stochastic forcing,most results are better than those provided by no-stochastic forcing,but only a part of ensemble forecast effect influenced by red noise is superior to that influenced by white noise.Finally,improvements pertaining to red noise stochastic forcing vary non-symmetrically and non-monotonically with the distribution of coefficientΦ.Besides,the selection of correlation coefficientΦis also dependent on non-linear models.