The parametric study of the indoor environment of green buildings focuses on the quantitative and qualitative improvement of residential building construction in China and the achievement of indoor thermal comfort at ...The parametric study of the indoor environment of green buildings focuses on the quantitative and qualitative improvement of residential building construction in China and the achievement of indoor thermal comfort at a low leve( of energy use. This study examines the effect of the adaptive thermal comfort of indoor environment control in hot summer and cold winter (HSCW) zones. This work is based on a field study of the regional thermal assessment of two typical cases, the results of which are compared with simulated results of various scenarios of "energy efficiency" strategy and "healthy housing" environmental control. First, the simulated results show that the adaptive thermal comfort of indoor environment control is actuaUy balanced in terms of occupancy, comfort, and energy efficiency. Second, adaptive thermal comfort control can save more energy for heating or cooling than other current healthy housing environmental controls in China's HSCW zone. Moreover, a large proportion of energy use is based on the subjective thermal comfort demand of occupants in any building type. Third, the building shape coefficient cannot dominate energy savings. The ratio of the superficial area of a bui[ding to the actual indoor floor area has a significant positive correlation with and affects the efficiency of buiidin~ thermal performance.展开更多
As a symbol of green architecture,double skin facade(DSF)represents a design which possesses many energy saving features,but due to the complexity of the system,the real performances and benefits have been difficult t...As a symbol of green architecture,double skin facade(DSF)represents a design which possesses many energy saving features,but due to the complexity of the system,the real performances and benefits have been difficult to predict.The objective of this study was to inform the applicability of DSFs,and contribute to the positive impacts of DSF designs.This study compared and contrasted energy savings in a temperate climate,where heating was the dominant energy strategy,and in a subtropical climate,where cooling spaces was the dominant issue.This paper focused on a university office building with a west facing shaft box window facade.The research method was a paired analysis of simulation studies which compared the energy performance of a set of buildings in two different climates.Simulation results showed a good agreement with measurements undertaken in the exiting building during a two-week period.The results specified that DSFs are capable of almost 50%energy savings in temperate and 16%in subtropical climates.Although these indicated DSFs are more suitable for temperate climates than warmer regions,the amount of energy savings in subtropical climates were also considerable.However,due to the costs of DSFs and potential loss of leasable floor area,investigations into other feasible ventilation options are necessary before final building design decisions are made.展开更多
文摘The parametric study of the indoor environment of green buildings focuses on the quantitative and qualitative improvement of residential building construction in China and the achievement of indoor thermal comfort at a low leve( of energy use. This study examines the effect of the adaptive thermal comfort of indoor environment control in hot summer and cold winter (HSCW) zones. This work is based on a field study of the regional thermal assessment of two typical cases, the results of which are compared with simulated results of various scenarios of "energy efficiency" strategy and "healthy housing" environmental control. First, the simulated results show that the adaptive thermal comfort of indoor environment control is actuaUy balanced in terms of occupancy, comfort, and energy efficiency. Second, adaptive thermal comfort control can save more energy for heating or cooling than other current healthy housing environmental controls in China's HSCW zone. Moreover, a large proportion of energy use is based on the subjective thermal comfort demand of occupants in any building type. Third, the building shape coefficient cannot dominate energy savings. The ratio of the superficial area of a bui[ding to the actual indoor floor area has a significant positive correlation with and affects the efficiency of buiidin~ thermal performance.
文摘As a symbol of green architecture,double skin facade(DSF)represents a design which possesses many energy saving features,but due to the complexity of the system,the real performances and benefits have been difficult to predict.The objective of this study was to inform the applicability of DSFs,and contribute to the positive impacts of DSF designs.This study compared and contrasted energy savings in a temperate climate,where heating was the dominant energy strategy,and in a subtropical climate,where cooling spaces was the dominant issue.This paper focused on a university office building with a west facing shaft box window facade.The research method was a paired analysis of simulation studies which compared the energy performance of a set of buildings in two different climates.Simulation results showed a good agreement with measurements undertaken in the exiting building during a two-week period.The results specified that DSFs are capable of almost 50%energy savings in temperate and 16%in subtropical climates.Although these indicated DSFs are more suitable for temperate climates than warmer regions,the amount of energy savings in subtropical climates were also considerable.However,due to the costs of DSFs and potential loss of leasable floor area,investigations into other feasible ventilation options are necessary before final building design decisions are made.