Ultralow-power non-volatile memristors are key elements in electronics.Generally,power reduction of memristors compromises data retention,a challenge known as the“power-retention dilemma,”due to the stochastic forma...Ultralow-power non-volatile memristors are key elements in electronics.Generally,power reduction of memristors compromises data retention,a challenge known as the“power-retention dilemma,”due to the stochastic formation of conductive dendrites in resistive-switching materials.Here,we report the results of conductive dendrite engineering in single-crystalline two-dimensional(2D)dielectrics in which directional control of filamentary distribution is possible.We find that the single-vacancy density(nSV)of single-crystalline hexagonal boron nitride(h-BN)plays an essential role in regulating conductive dendrite growth,supported by scanning joule expansion microscopy(SJEM).With optimized nSV,random dendrite growth is largely limited,and electrons hop between the neighboring Ag nanoclusters in vertical channels.The corresponding model was established to probe the relationship between nSV and memristor operating voltage.The conductive channel confinement in the vertical orientation contributes to long-retention non-volatile memristors with ultralow switch voltages(set:26 mV;reset:135 mV),excellent power efficiency(4 fW standby and a switching energy of 72 pJ)while keeping a high on/off resistance ratio of 108.Even at a record-low compliance current of 10 nA,memristors retains very robust nonvolatile,multiple resistive states with an operating voltage less than 120 mV(the per-transition power low as 900 pW).展开更多
基金support from NSFC(92264106,62090034,62104214,62122067,and 62261160574)the Research Grant Council of Hong Kong(CRS_PolyU502/22)+2 种基金the National Key R&D Program(2022YFA1204303)the NSFC of Zhejiang Province(DT23F0401 and DT23F040008)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001).
文摘Ultralow-power non-volatile memristors are key elements in electronics.Generally,power reduction of memristors compromises data retention,a challenge known as the“power-retention dilemma,”due to the stochastic formation of conductive dendrites in resistive-switching materials.Here,we report the results of conductive dendrite engineering in single-crystalline two-dimensional(2D)dielectrics in which directional control of filamentary distribution is possible.We find that the single-vacancy density(nSV)of single-crystalline hexagonal boron nitride(h-BN)plays an essential role in regulating conductive dendrite growth,supported by scanning joule expansion microscopy(SJEM).With optimized nSV,random dendrite growth is largely limited,and electrons hop between the neighboring Ag nanoclusters in vertical channels.The corresponding model was established to probe the relationship between nSV and memristor operating voltage.The conductive channel confinement in the vertical orientation contributes to long-retention non-volatile memristors with ultralow switch voltages(set:26 mV;reset:135 mV),excellent power efficiency(4 fW standby and a switching energy of 72 pJ)while keeping a high on/off resistance ratio of 108.Even at a record-low compliance current of 10 nA,memristors retains very robust nonvolatile,multiple resistive states with an operating voltage less than 120 mV(the per-transition power low as 900 pW).