期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gut microbiome-based thiamine metabolism contributes to the protective effect of one acidic polysaccharide from Selaginella uncinata(Desv.)Spring against inflammatory bowel disease
1
作者 haochen hui Zhuoya Wang +5 位作者 Xuerong Zhao Lina Xu Lianhong Yin Feifei Wang Liping Qu Jinyong Peng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第2期177-195,共19页
Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contain... Inflammatory bowel disease(IBD)is a serious disorder,and exploration of active compounds to treat it is necessary.An acidic polysaccharide named SUSP-4 was purified from Selaginella uncinata(Desv.)Spring,which contained galacturonic acid,galactose,xylose,arabinose,and rhamnose with the main chain structure of→4)-α-d-GalAp-(1→and→6)-β-d-Galp-(1→and the branched structure of→5)-α-l-Araf-(1→.Animal experiments showed that compared with Model group,SUSP-4 significantly improved body weight status,disease activity index(DAI),colonic shortening,and histopathological damage,and elevated occludin and zonula occludens protein 1(ZO-1)expression in mice induced by dextran sulfate sodium salt(DSS).16S ribosomal RNA(rRNA)sequencing indicated that SUSP-4 markedly downregulated the level of Akkermansia and Alistipes.Metabolomics results confirmed that SUSP-4 obviously elevated thiamine levels compared with Model mice by adjusting thiamine metabolism,which was further confirmed by a targeted metabolism study.Fecal transplantation experiments showed that SUSP-4 exerted an anti-IBD effect by altering the intestinal flora in mice.A mechanistic study showed that SUSP-4 markedly inhibited macrophage activation by decreasing the levels of phospho-nuclear factor kappa-B(p-NF-κB)and cyclooxygenase-2(COX-2)and elevating NF-E2-related factor 2(Nrf2)levels compared with Model group.In conclusion,SUSP-4 affected thiamine metabolism by regulating Akkermania and inhibited macrophage activation to adjust NF-κB/Nrf2/COX-2-mediated inflammation and oxidative stress against IBD.This is the first time that plant polysaccharides have been shown to affect thiamine metabolism against IBD,showing great potential for in-depth research and development applications. 展开更多
关键词 Gut microbiota Inflammatory bowel disease POLYSACCHARIDE Selaginella uncinata(Desv.)Spring Thiamine metabolism
暂未订购
Protective effects of dioscin against Parkinson's disease via regulating bile acid metabolism through remodeling gut microbiome/GLP-1 signaling 被引量:3
2
作者 Zhang Mao haochen hui +6 位作者 Xuerong Zhao Lina Xu Yan Qi Lianhong Yin Liping Qu Lan Han Jinyong Peng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2023年第10期1153-1167,共15页
It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effect... It is necessary to explore potent therapeutic agents via regulating gut microbiota and metabolism to combat Parkinson's disease(PD).Dioscin,a bioactive steroidal saponin,shows various activities.However,its effects and mechanisms against PD are limited.In this study,dioscin dramatically alleviated neuroinflammation and oxidative stress,and restored the disorders of mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP).16 S rDNA sequencing assay demonstrated that dioscin reversed MPTP-induced gut dysbiosis to decrease Firmicutes-to-Bacteroidetes ratio and the abundances of Enterococcus,Streptococcus,Bacteroides and Lactobacillus genera,which further inhibited bile salt hydrolase(BSH)activity and blocked bile acid(BA)deconjugation.Fecal microbiome transplantation test showed that the anti-PD effect of dioscin was gut microbiota-dependent.In addition,non-targeted fecal metabolomics assays revealed many differential metabolites in adjusting steroid biosynthesis and primary bile acid biosynthesis.Moreover,targeted bile acid metabolomics assay indicated that dioscin increased the levels of ursodeoxycholic acid,tauroursodeoxycholic acid,taurodeoxycholic acid and bmuricholic acid in feces and serum.In addition,ursodeoxycholic acid administration markedly improved the protective effects of dioscin against PD in mice.Mechanistic test indicated that dioscin significantly up-regulated the levels of takeda G protein-coupled receptor 5(TGR5),glucagon-like peptide-1 receptor(GLP-1R),GLP-1,superoxide dismutase(SOD),and down-regulated NADPH oxidases 2(NOX2)and nuclear factor-kappaB(NF-kB)levels.Our data indicated that dioscin ameliorated PD phenotype by restoring gut dysbiosis and regulating bile acid-mediated oxidative stress and neuroinflammation via targeting GLP-1 signal in MPTP-induced PD mice,suggesting that the compound should be considered as a prebiotic agent to treat PD in the future. 展开更多
关键词 Parkinson's disease DIOSCIN Gut microbiota Bile acid metabolism GLP-1
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部