期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In situ non-destructive measurement of Josephson junction resistance using fritting contact technique
1
作者 Lei Du hao-ran tao +7 位作者 Liang-Liang Guo Hai-Feng Zhang Yong Chen Xin Tian Chi Zhang Zhi-Long Jia Peng Duan Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期57-61,共5页
Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films,making them unsuitable for frequency measurements of superconducting qubits.In this study,we pr... Conventional four-probe methods for measuring the resistance of Josephson junctions can damage superconducting thin films,making them unsuitable for frequency measurements of superconducting qubits.In this study,we present a custom probe station measurement system that employs the fritting contact technique to achieve in situ,non-destructive measurements of Josephson junction resistance.Our experimental results demonstrate that this method allows for accurate prediction of qubit frequency with an error margin of 17.2 MHz.Moreover,the fritting contact technique does not significantly affect qubit coherence time or the integrity of the superconducting film,confirming its non-destructive nature.This innovative approach provides a dependable foundation for frequency tuning and addressing frequency collision issues,thus supporting the advancement and practical deployment of superconducting quantum computing. 展开更多
关键词 NON-DESTRUCTIVE fritting contact qubit frequency Josephson junction resistance
原文传递
In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
2
作者 hao-ran tao Lei Du +8 位作者 Liang-Liang Guo Yong Chen Hai-Feng Zhang Xiao-Yan Yang Guo-Liang Xu Chi Zhang Zhi-Long Jia Peng Duan Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期133-137,共5页
The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi... The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices. 展开更多
关键词 ANTI-AGING oxidation dielectric loss Nb superconducting quantum circuits
原文传递
Correction of microwave pulse reflection by digital filters in superconducting quantum circuits
3
作者 Liang-Liang Guo Peng Duan +9 位作者 Lei Du Hai-Feng Zhang hao-ran tao Yong Chen Xiao-Yan Yang Chi Zhang Zhi-Long Jia Wei-Cheng Kong Zhao-Yun Chen Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期117-123,共7页
Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch ... Reducing the control error is vital for high-fidelity digital and analog quantum operations.In superconducting circuits,one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain.Here,we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line.We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters,which enables real-time reflection correction when integrated into the field-programmable gate array(FPGA).We achieve a reduction of single-qubit gate infidelity from 0.67%to 0.11%after eliminating microwave reflection.Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors. 展开更多
关键词 reflection cancelation digital filter single-qubit gate superconducting circuit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部