Percutaneous coronary intervention(PCI),as an essential treatment for coronary artery disease,has significantly improved the prognosis of patients with large coronary artery lesions.However,some patients continue to e...Percutaneous coronary intervention(PCI),as an essential treatment for coronary artery disease,has significantly improved the prognosis of patients with large coronary artery lesions.However,some patients continue to experience myocar-dial ischemic symptoms post-procedure,largely due to coronary microvascular dysfunction(CMD).The pathophysiological mechanisms of CMD are complex and involve endothelial dysfunction,microvascular remodeling,reperfusion in-jury,and metabolic abnormalities.Moreover,components of metabolic syndrome,including obesity,hyperglycemia,hypertension,and dyslipidemia,exacerbate the occurrence and progression of CMD through multiple pathways.This review systematically summarizes the latest research advan-cements in CMD after PCI,including its pathogenesis,diagnostic techniques,management strategies,and future research directions.For diagnosis,invasive techniques such as coronary flow reserve and the index of microcirculatory resistance,as well as non-invasive imaging modalities(positron emission tomography and cardiac magnetic reso-nance),provide tools for early CMD detection.In terms of management,a multi-level intervention strategy is emphasized,incorporating lifestyle modifications(diet,exercise,and weight control),pharmacotherapy(vasodilators,hypoglycemic agents,statins,and metabolic modulators),traditional Chinese medicine,and specialized treatments(enhanced external counterpulsation,metabolic surgery,and lipoprotein apheresis).However,challenges remain in CMD treatment,including limitations in diagnostic tools and the lack of personalized treatment strategies.Future research should focus on the complex interactions between CMD and metabolic risks,aiming to optimize diagnostic and therapeutic strate-gies to improve the long-term prognosis of patients post-PCI.展开更多
BACKGROUND Recently,numerous studies have reported the application of nanomedicines in colorectal cancer treatment.However,no systematic bibliometric analysis has been conducted to examine the potential and mechanisms...BACKGROUND Recently,numerous studies have reported the application of nanomedicines in colorectal cancer treatment.However,no systematic bibliometric analysis has been conducted to examine the potential and mechanisms of action of nanomedicine in this context.Such an analysis may provide a comprehensive overview of the current research landscape,identify emerging trends,and highlight key areas for future investigation.AIM To describe the current global research landscape on the application of nanomedicine in colorectal cancer treatment.METHODS The Web of Science Core Collection database was searched for literature published from January 1,2010,to August 7,2024,focusing on the application of nanomedicine in colorectal cancer treatment.Bibliometric analysis and visualization mapping of countries,institutions,authors,keywords,references of the relevant research literature were conducted using CiteSpace(6.2R6),VOSviewer(1.6.20),and bibliometrix(based on R 4.3.2).RESULTS A total of 3598 articles were included,with a rapid increase in publication volume starting from 2010.China published the most papers on this topic,followed by the United States and India.The United States emerged as the central country in this field,and the Egyptian Knowledge Bank and Chinese Academy of Sciences were the institutions with the highest number of publications.The Chinese Academy of Sciences exhibited the highest centrality.The most prolific author was Zhang Y,whereas Siegel RL was the most cited author,and Li Y had the highest H-index.The International Journal of Nanomedicine had the most publications and Biomaterials received the most citations.Keyword co-occurrence analysis identified 11837 keywords grouped into 13 clusters with 15 highfrequency highlighted keywords.The top three keyword clusters were“0 colorectal cancer”,“1 drug delivery”,and“2 delivery”,with the top three keywords being“nanoparticles”,“colorectal cancer”,and“drug delivery”.CONCLUSION Research on nanomedicine for colorectal cancer has surged since 2010,focusing on“nanoparticles”and“drug delivery”.Future studies should investigate nanomaterial stability and target-specific drug release.展开更多
Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and...Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and improving battery performance.Studying real-time changes in the surface of electrode materials during normal operation can be an effective way to assess and optimize the practical performance of electrode materials,thus,in situ and in operando characterization techniques are particularly important.However,batteries are hard to be studied by in situ characterization measurements due to their hermetically sealed shells,and there is still much room for battery characterizations.In this work,a specially designed battery based on the structure of coin cells,whose upper cover was transparent,was constructed.With such a device,acquisition of diffuse reflectance spectra of electrode materials during charging and discharging was realized.This not only provided a simple measurement accessory for diffuse reflectance spectroscopy(DRS),but also complemented in situ characterization techniques for batteries.Taking commonly used cathode materials in lithium-ion batteries(LIBs),including LiFePO_(4)(LFP),NCM811 and LiCoO_(2)(LCO)as examples,we managed tofind out the response relationships of different electrode materials to visible light of different wavelengths under ordinary reflectance illumination conditions.Heterogeneity of different cathode ma-terials on interaction relationships with the lights of different wavelengths was also revealed.This work demonstrated the capability of guiding wavelength selection for different materials and assessing electrochemical performances of in situ diffuse reflectance spectroelectrochemistry.By combining electrochemistry with diffuse reflectance spectroscopy,this work made an effective complementary for spectroelectrochemistry.展开更多
Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in dis...Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.展开更多
Based on the fluidized roasting reduction technology of low-grade pyrolusite coupling with pretreatment of stone coal, the manganese reduction efficiency was investigated and technical conditions were optimized. It is...Based on the fluidized roasting reduction technology of low-grade pyrolusite coupling with pretreatment of stone coal, the manganese reduction efficiency was investigated and technical conditions were optimized. It is found that the optimum manganese reduction efficiency can be up to 98.97% under the conditions that the mass ratio of stone coal to pyrolusite is 3:1, the roasting temperature of stone coal is 1000℃, the roasting temperature of pyrolusite is 800℃, and the roasting time is 2 h. Other low-grade pyrolusite ores in China from Guangxi, Hunan, and Guizhou Provinces were tested and all these minerals responded well, giving -99% manganese reduction efficiency. Meanwhile, the reduction kinetic model has been established. It is confirmed that the reduction process is controlled by the interface chemical reaction. The apparent activation energy is 36.397 kJ/mol.展开更多
Corrected stress field intensity obtained by averaging the superior limit of intrinsic damage dissipation work in critical domain, which considers thoroughly thermodynamic consistency within irreversible thermodynamic...Corrected stress field intensity obtained by averaging the superior limit of intrinsic damage dissipation work in critical domain, which considers thoroughly thermodynamic consistency within irreversible thermodynamic framework, was proposed for predictions of high-cycle fatigue endurance limits. Simultaneously, the effects of mean stress, additional hardening behavior related to non-proportional loading paths and stress gradients on multiaxial high-cycle fatigue are taken into account in the proposed approach. The approach is an extension of the general stress field intensity. For a better comparison, existing multiaxial high-cycle fatigue criteria were employed to predict the endurance limits of different metallic materials subjected to different multiaxial loading paths, and it is shown that present proposal performs better from statistical value of error indexes, which make the proposed approach of corrected stress field intensity and its associated concepts provide a new conception to predict endurance limits of multiaxial high-cycle fatigue with high accuracy.展开更多
The arc tooth gear spindle (ATGS) is the key structure of the drive system of hot finishing rolling mills. To investigate the dynamic characteristics of ATGS of the drive system of hot finishing rolling mills, a dynam...The arc tooth gear spindle (ATGS) is the key structure of the drive system of hot finishing rolling mills. To investigate the dynamic characteristics of ATGS of the drive system of hot finishing rolling mills, a dynamic mechanical model of ATGS was established. The influences of dynamic displacement and dynamic torque on dynamic load (meshing force, additional torque and friction torque) were studied during the non-steady-state operation of ATGS. On this basis, a dynamic model of rolling mill drive system was established considering the arc tooth gear dynamic characteristics. The dynamic response of the drive system was simulated and analyzed. The results showed that the nonlinear characteristics of ATGS were obvious;the meshing force (PX and PZ) could restrain the increase in dynamic displacement, which reflected the positive stiffness of ATGS;there was a coupling among the vertical, horizontal and torsional directions in the drive system model considering the dynamic characteristics of the arc tooth gear;the vibration intensity of ATGS in the horizontal direction is greater than that in the vertical direction when the self-excited torsional vibration happens;the greater the axial inclination angle was, the more complex the vibration mode was, and the lower the stability of the drive system was.展开更多
Low concentration alkaline leaching was used for predesilication treatment of low-grade pyrolusite. The effects of initial NaOH concentration, liquid-to-solid ratio, leaching temperature, leaching time and stirring sp...Low concentration alkaline leaching was used for predesilication treatment of low-grade pyrolusite. The effects of initial NaOH concentration, liquid-to-solid ratio, leaching temperature, leaching time and stirring speed on silica leaching rate were investigated and the kinetics of alkaline leaching process was studied. The results show that silica leaching rate reached 91.2% under the conditions of initial NaOH concentration of 20%, liquid-to-solid ratio of 4:1, leaching temperature of 180 ℃, leaching time of 4 h and stirring speed of 300 r/min. Shrinking-core model showed that the leaching process was controlled by the chemical surface reaction with activation energy Ea of 53.31 k J/mol. The fluidized roasting conditions for preparation of sodium manganate were optimized by the orthogonal experiments using the desiliconized residue. The conversion rate of sodium manganate was obtained to be 89.7% under the conditions of silica leaching rate of 91.2%, NaOH/MnO2 mass ratio of 3:1, roasting temperature of 500 ℃ and roasting time of 4 h, and it increased with the increase of silicon leaching rate.展开更多
A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roastin...A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.展开更多
A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressur...A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressurized roasting at an AS-to-slag mass ratio 3:1 and 370℃for 90 min,the extraction rates of titanium,aluminum and magnesium reached 94.5%,91.9%and 97.4%,respectively.The acid leaching solution was subjected to re-crystallization in a boiling state to obtain a titanium product having a TiO2 content of 94.1%.The above crystallization mother liquor was adjusted to pH=6 and pH≥12.2,respectively,and then qualified Al2O3 and MgO products were obtained.The analysis through XRD and SEM−EDS proves that the main phases in roasted samples were NH4AlSO4,CaSO4 and TiOSO4.The thermodynamic analysis presents that the main minerals of perovskite,spinel and diopside in raw ore could spontaneously react with the intermediate produced by AS under optimal conditions.展开更多
Manganese (Mn) leaching and recovery from low-grade pyrolusite ore were studied using sulfiaric acid (H2SO4) as a leachant and pyrolysis-pretreated sawdust as a reductant. The effects of the dosage of pyrolysis-pr...Manganese (Mn) leaching and recovery from low-grade pyrolusite ore were studied using sulfiaric acid (H2SO4) as a leachant and pyrolysis-pretreated sawdust as a reductant. The effects of the dosage of pyrolysis-pretreated sawdust to pyrolusite ore, the concentration of sulfuric acid, the liquid/solid ratio, the leaching temperature, and the leaching time on manganese and iron leaching efficiencies were inves- tigated. Analysis of manganese and iron leaching efficiencies revealed that a high manganese leaching efficiency was achieved with low iron extraction. The optimal leaching efficiency was determined to be 20wt% pyrolysis-pretreated sawdust and 3.0 mol/L H2SO4 using a liq- uid/solid ratio of 6.0 mL/g for 90min at 90℃. Other low-grade pyrolusite ores were tested, and the results showed that they responded well with manganese leaching efficiencies greater than 98%.展开更多
Cornstalk is usually directly used as a reductant in reduetive leaching manganese. However, low utilization of cornstalk makes low manganese dissolution ratio, In the research, pretreatment for cornstalk was proposed ...Cornstalk is usually directly used as a reductant in reduetive leaching manganese. However, low utilization of cornstalk makes low manganese dissolution ratio, In the research, pretreatment for cornstalk was proposed to improve manganese dissolution ratio. Cornstalk was preprocessed by a heated sulfuric acid solution (1.2 M of sulfuric acid concentration) for 10 min at 80℃. Thereafter, both the pretreated solution and the residue were used as a reductant for manganese leaching. This method not only exhibited superior activity for hydrolyzing cornstalk but also enhanced manganese dissolution. These effects were attributed to an increase in the amount of reductive sugars resulting from lignin hydrolysis. Through acid pretreatment for cornstalk, the manganese dissolution ratio was improved from 50.14% to 83.46%. The present work demonstrates for the first time the effective acid pretreatment of cornstalk to provide a cost-effective reductant for manganese leaching.展开更多
An efficient electrochemical approach has been developed for the construction of 3-sulfanylquinoline derivatives by treating phenylethynylbenzoxazinanones with disulfides in an undivided cell.The protocol provided a c...An efficient electrochemical approach has been developed for the construction of 3-sulfanylquinoline derivatives by treating phenylethynylbenzoxazinanones with disulfides in an undivided cell.The protocol provided a convenient route to functionalized quinolines with good functional group tolerance.Moreover,it does not require any metal catalysts or additives,furnishing a series of biologicalquinolines inmoderatetogoodyields.展开更多
The piezocatalytic characteristic of bismuth oxyhalides(BiOX,X=Cl,Br,and I) has been increasingly capturing interest for its potential in hydrogen evolution reaction(HER) through water splitting process.The performanc...The piezocatalytic characteristic of bismuth oxyhalides(BiOX,X=Cl,Br,and I) has been increasingly capturing interest for its potential in hydrogen evolution reaction(HER) through water splitting process.The performance regarding these piezocatalysts is closely related to the halogen element present in BiOX;yet,the specific influence mechanisms remain unclear.In this study,we prepared BiOX catalysts via a hydrothermal process and explored their piezocatalytic HER activities.Owing to the layered bismuth s tructure,the resulting sheet-like piezocatalysts can efficiently capture the mechanic stimulus and allow the robust piezoelectric field,contributing to the piezocatalytic operation.It demonstrates that the BiOBr achieves a remarkable piezocatalytic HER efficiency of 813 μmol g^(-1)h^(-1),outperforming BiOCl and BiOI.The density functional theory(DFT)calculation results reveal that the BiOBr with moderate halogen atom size and lattice layer spacing possesses the strongest piezoelectricity,which enhances the separation and transfer of electron-hole pairs.Meanwhile,the exposed Br atom layer facilitates a large Bader charge and a low surface Gibbs free energy(ΔG_(H)),enhancing charge transfer for hydrogen reduction at the solid-liquid surface,thereby increasing the HER efficiency.This research sheds light on the halogen-dependent piezocatalytic activity of BiOX catalysts,offering valuable insights for the development of high-performance piezocatalysts.展开更多
The intergranular corrosion behavior of 2050 Al-Li alloy subjected to non-isothermal aging(NIA)treatment with varying pre-deformation amounts was investigated.Results indicate that the resistance to intergranular corr...The intergranular corrosion behavior of 2050 Al-Li alloy subjected to non-isothermal aging(NIA)treatment with varying pre-deformation amounts was investigated.Results indicate that the resistance to intergranular corrosion improves with increasing pre-deformation amouts.However,when the pre-deformation amount reaches 20%,the corrosion resistance deteriorates.Microstructural analyses via transmission electron microscopy(TEM)and electron backscatter diffraction(EBSD)reveal that as pre-deformation amount increases,the fraction of high-angle grain boundaries(HAGBs)decreases,while the proportion of low-angle grain boundaries(LAGBs)increases.This change provides additional nucleation sites for precipitates,leading to a reduction in T1 phase size and an increase in T1 phase density.The finer T1 phases contribute to a lower localized potential difference within the grains,slowering corrosion propagation.Furthermore,during corrosion,preferential dissolution of Li results in Cu enrichment along grain boundaries,which further reduces the intergranular corrosion resistance.展开更多
Stability against oxygen is an important factor affecting the performance of organic semiconductor devices.Improving photooxidation stability can prolong the service life of the device and maintain the mechanical and ...Stability against oxygen is an important factor affecting the performance of organic semiconductor devices.Improving photooxidation stability can prolong the service life of the device and maintain the mechanical and photoelectric properties of the device.Generally,various encapsulation methods from molecular structure to macroscopic device level are used to improve photooxidation stability.Here,we adopted a crystallization strategy to allow 14H-spiro[dibenzo[c,h]acridine-7,9′-fluorene](SFDBA)to pack tightly to resist fluorescence decay caused by oxidation.In this case,the inert group of SFDBA acts as a“steric armor”,protecting the photosensitive group from being attacked by oxygen.Therefore,compared with the fluorescence quenching of SFDBA powder under 2 h of sunlight,SFDBA crystal can maintain its fluorescence emission for more than 8 h under the same conditions.Furthermore,the photoluminescence quantum yields(PLQYs)of the crystalline film is 327%higher than that of the amorphous film.It shows that the crystallization strategy is an effective method to resist oxidation.展开更多
文摘Percutaneous coronary intervention(PCI),as an essential treatment for coronary artery disease,has significantly improved the prognosis of patients with large coronary artery lesions.However,some patients continue to experience myocar-dial ischemic symptoms post-procedure,largely due to coronary microvascular dysfunction(CMD).The pathophysiological mechanisms of CMD are complex and involve endothelial dysfunction,microvascular remodeling,reperfusion in-jury,and metabolic abnormalities.Moreover,components of metabolic syndrome,including obesity,hyperglycemia,hypertension,and dyslipidemia,exacerbate the occurrence and progression of CMD through multiple pathways.This review systematically summarizes the latest research advan-cements in CMD after PCI,including its pathogenesis,diagnostic techniques,management strategies,and future research directions.For diagnosis,invasive techniques such as coronary flow reserve and the index of microcirculatory resistance,as well as non-invasive imaging modalities(positron emission tomography and cardiac magnetic reso-nance),provide tools for early CMD detection.In terms of management,a multi-level intervention strategy is emphasized,incorporating lifestyle modifications(diet,exercise,and weight control),pharmacotherapy(vasodilators,hypoglycemic agents,statins,and metabolic modulators),traditional Chinese medicine,and specialized treatments(enhanced external counterpulsation,metabolic surgery,and lipoprotein apheresis).However,challenges remain in CMD treatment,including limitations in diagnostic tools and the lack of personalized treatment strategies.Future research should focus on the complex interactions between CMD and metabolic risks,aiming to optimize diagnostic and therapeutic strate-gies to improve the long-term prognosis of patients post-PCI.
基金Supported by Shanghai Municipal Health Commission Research Project,No.202340156.
文摘BACKGROUND Recently,numerous studies have reported the application of nanomedicines in colorectal cancer treatment.However,no systematic bibliometric analysis has been conducted to examine the potential and mechanisms of action of nanomedicine in this context.Such an analysis may provide a comprehensive overview of the current research landscape,identify emerging trends,and highlight key areas for future investigation.AIM To describe the current global research landscape on the application of nanomedicine in colorectal cancer treatment.METHODS The Web of Science Core Collection database was searched for literature published from January 1,2010,to August 7,2024,focusing on the application of nanomedicine in colorectal cancer treatment.Bibliometric analysis and visualization mapping of countries,institutions,authors,keywords,references of the relevant research literature were conducted using CiteSpace(6.2R6),VOSviewer(1.6.20),and bibliometrix(based on R 4.3.2).RESULTS A total of 3598 articles were included,with a rapid increase in publication volume starting from 2010.China published the most papers on this topic,followed by the United States and India.The United States emerged as the central country in this field,and the Egyptian Knowledge Bank and Chinese Academy of Sciences were the institutions with the highest number of publications.The Chinese Academy of Sciences exhibited the highest centrality.The most prolific author was Zhang Y,whereas Siegel RL was the most cited author,and Li Y had the highest H-index.The International Journal of Nanomedicine had the most publications and Biomaterials received the most citations.Keyword co-occurrence analysis identified 11837 keywords grouped into 13 clusters with 15 highfrequency highlighted keywords.The top three keyword clusters were“0 colorectal cancer”,“1 drug delivery”,and“2 delivery”,with the top three keywords being“nanoparticles”,“colorectal cancer”,and“drug delivery”.CONCLUSION Research on nanomedicine for colorectal cancer has surged since 2010,focusing on“nanoparticles”and“drug delivery”.Future studies should investigate nanomaterial stability and target-specific drug release.
基金the financial support from the National Natural Science Foundation of China (No. 21925403)the Excellent Research Program of Nanjing University (Grant No. ZYJH004)。
文摘Developing in situ spectroelectrochemistry methods,which can provide detailed information about species trans-formation during electrochemical reactions,is very important for studying electrode reaction mechanisms and improving battery performance.Studying real-time changes in the surface of electrode materials during normal operation can be an effective way to assess and optimize the practical performance of electrode materials,thus,in situ and in operando characterization techniques are particularly important.However,batteries are hard to be studied by in situ characterization measurements due to their hermetically sealed shells,and there is still much room for battery characterizations.In this work,a specially designed battery based on the structure of coin cells,whose upper cover was transparent,was constructed.With such a device,acquisition of diffuse reflectance spectra of electrode materials during charging and discharging was realized.This not only provided a simple measurement accessory for diffuse reflectance spectroscopy(DRS),but also complemented in situ characterization techniques for batteries.Taking commonly used cathode materials in lithium-ion batteries(LIBs),including LiFePO_(4)(LFP),NCM811 and LiCoO_(2)(LCO)as examples,we managed tofind out the response relationships of different electrode materials to visible light of different wavelengths under ordinary reflectance illumination conditions.Heterogeneity of different cathode ma-terials on interaction relationships with the lights of different wavelengths was also revealed.This work demonstrated the capability of guiding wavelength selection for different materials and assessing electrochemical performances of in situ diffuse reflectance spectroelectrochemistry.By combining electrochemistry with diffuse reflectance spectroscopy,this work made an effective complementary for spectroelectrochemistry.
基金funding by National Natural Science Foundation of China(No.82174492)National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion Project(N o.ZJJBGS2024002-1).
文摘Background: The human gut microbiome is an important target for disease treatment and prevention. Various microbial species within the complex ecosystem of the microbiome have been shown to play important roles in disease. Identification of bioactive materials capable of altering the abundances of these species both safely and effectively is a major goal in microbiome research. Many traditional Chinese medicines (TCMs) have been reported to affect the composition of the gut microbiome. Here, we summarize studies that have used TCMs to alter the gut microbiome and discuss the response relationship between TCMs and gut microbial species. Methods: We searched the PubMed, Web of Science, and Knowledge Network databases using the terms “traditional Chinese medicine,” “gut microbiome,” and specific system disease names (endocrine, immune, nervous, cardiovascular, and digestive). Studies were excluded if irrelevant or if the experimental procedures were unclear. Results: TCMs have been reported to affect a wide range of gut microbial taxa spanning major phyla, including Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobiota, Actinobacteria, and Fusobacteria. In all, 54 TCMs including compounds and extracts have been tested in rodents and 30 have been examined in human trials. Almost all studies have reported positive results in regulating the gut microbiome as well as modulating corresponding phenotypes, spanning diseases of the endocrine, immune, nervous, cardiovascular, and digestive systems. Gut species, including Akkermansia, Bacteroides, Fusobacterium, Faecalibacterium, and E. coli, were found to be regulated by 19 TCMs. A network was constructed to visualize the interactions between TCMs and these taxa. Conclusion: There exists a complex and close relationship between intestinal microflora and diseases. Sufficient experimental data and studies have proved that the imbalance of intestinal microflora affects health by mediating metabolism, immune regulation, inflammation and signal transduction. Many characteristic alterations of intestinal microflora are positively correlated with diseases, so intestinal microflora has become a potential risk index and treatment target for many diseases. Many TCMs affect the relative abundances of microbial species in the gut, and therefore may be useful for modulating the gut microbiome. This review provides a reference for prioritizing candidate TCMs from the enormous repertoire of such medicines to test which specific gut microbes are targeted.
基金financially supported by the National Natural Science Foundation of China (Nos. 21176026 and 21176242)the National High Technology Research and Development Program of China (No. 2012AA062401)+2 种基金the National Key Technology R&D Program of China (Nos.2012BAB07B05 and 2012BAB14B05)China Ocean Mineral resources R&D Association (No. DY125-15-T-08)the Fundamental Reserarch Funds for the Central Universities of China (No. FRT-TP-09-002B)
文摘Based on the fluidized roasting reduction technology of low-grade pyrolusite coupling with pretreatment of stone coal, the manganese reduction efficiency was investigated and technical conditions were optimized. It is found that the optimum manganese reduction efficiency can be up to 98.97% under the conditions that the mass ratio of stone coal to pyrolusite is 3:1, the roasting temperature of stone coal is 1000℃, the roasting temperature of pyrolusite is 800℃, and the roasting time is 2 h. Other low-grade pyrolusite ores in China from Guangxi, Hunan, and Guizhou Provinces were tested and all these minerals responded well, giving -99% manganese reduction efficiency. Meanwhile, the reduction kinetic model has been established. It is confirmed that the reduction process is controlled by the interface chemical reaction. The apparent activation energy is 36.397 kJ/mol.
基金The authors gratefully acknowledge the support provided by Key Natural Science Foundation of Hebei Province of China (E2017203161).
文摘Corrected stress field intensity obtained by averaging the superior limit of intrinsic damage dissipation work in critical domain, which considers thoroughly thermodynamic consistency within irreversible thermodynamic framework, was proposed for predictions of high-cycle fatigue endurance limits. Simultaneously, the effects of mean stress, additional hardening behavior related to non-proportional loading paths and stress gradients on multiaxial high-cycle fatigue are taken into account in the proposed approach. The approach is an extension of the general stress field intensity. For a better comparison, existing multiaxial high-cycle fatigue criteria were employed to predict the endurance limits of different metallic materials subjected to different multiaxial loading paths, and it is shown that present proposal performs better from statistical value of error indexes, which make the proposed approach of corrected stress field intensity and its associated concepts provide a new conception to predict endurance limits of multiaxial high-cycle fatigue with high accuracy.
文摘The arc tooth gear spindle (ATGS) is the key structure of the drive system of hot finishing rolling mills. To investigate the dynamic characteristics of ATGS of the drive system of hot finishing rolling mills, a dynamic mechanical model of ATGS was established. The influences of dynamic displacement and dynamic torque on dynamic load (meshing force, additional torque and friction torque) were studied during the non-steady-state operation of ATGS. On this basis, a dynamic model of rolling mill drive system was established considering the arc tooth gear dynamic characteristics. The dynamic response of the drive system was simulated and analyzed. The results showed that the nonlinear characteristics of ATGS were obvious;the meshing force (PX and PZ) could restrain the increase in dynamic displacement, which reflected the positive stiffness of ATGS;there was a coupling among the vertical, horizontal and torsional directions in the drive system model considering the dynamic characteristics of the arc tooth gear;the vibration intensity of ATGS in the horizontal direction is greater than that in the vertical direction when the self-excited torsional vibration happens;the greater the axial inclination angle was, the more complex the vibration mode was, and the lower the stability of the drive system was.
基金Project(2015ZX07205-003)supported by the Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProject(DY125-15-T-08)supported by the China Ocean Mineral Resources Research&Development ProgramProjects(21176026,21176242)supported by the National Natural Science Foundation of China
文摘Low concentration alkaline leaching was used for predesilication treatment of low-grade pyrolusite. The effects of initial NaOH concentration, liquid-to-solid ratio, leaching temperature, leaching time and stirring speed on silica leaching rate were investigated and the kinetics of alkaline leaching process was studied. The results show that silica leaching rate reached 91.2% under the conditions of initial NaOH concentration of 20%, liquid-to-solid ratio of 4:1, leaching temperature of 180 ℃, leaching time of 4 h and stirring speed of 300 r/min. Shrinking-core model showed that the leaching process was controlled by the chemical surface reaction with activation energy Ea of 53.31 k J/mol. The fluidized roasting conditions for preparation of sodium manganate were optimized by the orthogonal experiments using the desiliconized residue. The conversion rate of sodium manganate was obtained to be 89.7% under the conditions of silica leaching rate of 91.2%, NaOH/MnO2 mass ratio of 3:1, roasting temperature of 500 ℃ and roasting time of 4 h, and it increased with the increase of silicon leaching rate.
文摘A novel process based on chlorination roasting was proposed to simultaneously recover gold and zinc from refractory carbonaceous gold ore by using NaCl as chlorination agent.The effects of roasting temperature,roasting time and NaCl content on the volatilization rates of gold and zinc were investigated.The reaction mechanism and the phase transition process were also analyzed by means of SEM,EDS and XRD.The results demonstrated that under the optimal conditions of NaCl content of 10%,roasting temperature of 800℃,roasting time of 4 h and gas flow rate of 1 L/min,the rates of gold and zinc were 92%and 92.56%,respectively.During low-temperature chlorination roasting stage,a certain content of sulfur was beneficial to the chlorination reactions of gold and zinc;and during high-temperature chlorination roasting stage,the crystal structure of vanadium-bearing mica was destroyed,and the vanadium-containing oxides were beneficial to the chlorinating volatilization of gold and zinc.Eventually,the chlorinated volatiles of gold and zinc could be recovered by alkaline solution.
基金Project(DY135-B2-15)supported by China Ocean Mineral Resources R&D AssociationProject(2015ZX07205-003)supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026)supported by the National Natural Science Foundation of China。
文摘A novel method of extracting valuable metals from Ti-bearing blast furnace slag(TBBF slag)via pressure pyrolysis of recyclable ammonium sulfate(AS)−acid leaching process was proposed.The results show that when pressurized roasting at an AS-to-slag mass ratio 3:1 and 370℃for 90 min,the extraction rates of titanium,aluminum and magnesium reached 94.5%,91.9%and 97.4%,respectively.The acid leaching solution was subjected to re-crystallization in a boiling state to obtain a titanium product having a TiO2 content of 94.1%.The above crystallization mother liquor was adjusted to pH=6 and pH≥12.2,respectively,and then qualified Al2O3 and MgO products were obtained.The analysis through XRD and SEM−EDS proves that the main phases in roasted samples were NH4AlSO4,CaSO4 and TiOSO4.The thermodynamic analysis presents that the main minerals of perovskite,spinel and diopside in raw ore could spontaneously react with the intermediate produced by AS under optimal conditions.
基金financially supported by the China Ocean Mineral Resource Research and Development Association (No. DY125-15-T-08)the National Key Technology Research and Development Program of China (No. 2012BAB07B05)+1 种基金the National High Technology Research and Development Program of China (No. 2012AA062401)the National Natural Science Foundation of China (Nos. 21176242 and 21176026)
文摘Manganese (Mn) leaching and recovery from low-grade pyrolusite ore were studied using sulfiaric acid (H2SO4) as a leachant and pyrolysis-pretreated sawdust as a reductant. The effects of the dosage of pyrolysis-pretreated sawdust to pyrolusite ore, the concentration of sulfuric acid, the liquid/solid ratio, the leaching temperature, and the leaching time on manganese and iron leaching efficiencies were inves- tigated. Analysis of manganese and iron leaching efficiencies revealed that a high manganese leaching efficiency was achieved with low iron extraction. The optimal leaching efficiency was determined to be 20wt% pyrolysis-pretreated sawdust and 3.0 mol/L H2SO4 using a liq- uid/solid ratio of 6.0 mL/g for 90min at 90℃. Other low-grade pyrolusite ores were tested, and the results showed that they responded well with manganese leaching efficiencies greater than 98%.
基金financially supported by the National Water Pollution Control and Treatment Science and Technology Major Project (No. 2015ZX07205-003)the China Ocean Mineral Resource R&D Association (No. DY125-15-T-08)the National Natural Science Foundation of China (Nos. 21176242 and 21176026)
文摘Cornstalk is usually directly used as a reductant in reduetive leaching manganese. However, low utilization of cornstalk makes low manganese dissolution ratio, In the research, pretreatment for cornstalk was proposed to improve manganese dissolution ratio. Cornstalk was preprocessed by a heated sulfuric acid solution (1.2 M of sulfuric acid concentration) for 10 min at 80℃. Thereafter, both the pretreated solution and the residue were used as a reductant for manganese leaching. This method not only exhibited superior activity for hydrolyzing cornstalk but also enhanced manganese dissolution. These effects were attributed to an increase in the amount of reductive sugars resulting from lignin hydrolysis. Through acid pretreatment for cornstalk, the manganese dissolution ratio was improved from 50.14% to 83.46%. The present work demonstrates for the first time the effective acid pretreatment of cornstalk to provide a cost-effective reductant for manganese leaching.
基金supported by the National Natural Science Foundation of China(21801152 and 21572110)the Youth Innovation Science and Technology Plan of Colleges and Universities in Shandong Province(2021KJ076).
文摘An efficient electrochemical approach has been developed for the construction of 3-sulfanylquinoline derivatives by treating phenylethynylbenzoxazinanones with disulfides in an undivided cell.The protocol provided a convenient route to functionalized quinolines with good functional group tolerance.Moreover,it does not require any metal catalysts or additives,furnishing a series of biologicalquinolines inmoderatetogoodyields.
基金financially supported by the Natural Science Foundation of Shandong Province(No.ZR2023MB151)the Natural Science Foundation of Shandong Province for Excellent Young Scholars(No.ZR2022YQ13)+1 种基金the Science and Technology Special Project of Qingdao(No.24-1-8-xdny-18nsh)the Taishan Scholar Project of Shandong Province(No.tsqn202211159)
文摘The piezocatalytic characteristic of bismuth oxyhalides(BiOX,X=Cl,Br,and I) has been increasingly capturing interest for its potential in hydrogen evolution reaction(HER) through water splitting process.The performance regarding these piezocatalysts is closely related to the halogen element present in BiOX;yet,the specific influence mechanisms remain unclear.In this study,we prepared BiOX catalysts via a hydrothermal process and explored their piezocatalytic HER activities.Owing to the layered bismuth s tructure,the resulting sheet-like piezocatalysts can efficiently capture the mechanic stimulus and allow the robust piezoelectric field,contributing to the piezocatalytic operation.It demonstrates that the BiOBr achieves a remarkable piezocatalytic HER efficiency of 813 μmol g^(-1)h^(-1),outperforming BiOCl and BiOI.The density functional theory(DFT)calculation results reveal that the BiOBr with moderate halogen atom size and lattice layer spacing possesses the strongest piezoelectricity,which enhances the separation and transfer of electron-hole pairs.Meanwhile,the exposed Br atom layer facilitates a large Bader charge and a low surface Gibbs free energy(ΔG_(H)),enhancing charge transfer for hydrogen reduction at the solid-liquid surface,thereby increasing the HER efficiency.This research sheds light on the halogen-dependent piezocatalytic activity of BiOX catalysts,offering valuable insights for the development of high-performance piezocatalysts.
基金supported by the Postdoctoral Fellowship Program of CPSF,China(No.GZC20242033)the National Science and Technology Research Program of China(No.JPPT2023PXY01).
文摘The intergranular corrosion behavior of 2050 Al-Li alloy subjected to non-isothermal aging(NIA)treatment with varying pre-deformation amounts was investigated.Results indicate that the resistance to intergranular corrosion improves with increasing pre-deformation amouts.However,when the pre-deformation amount reaches 20%,the corrosion resistance deteriorates.Microstructural analyses via transmission electron microscopy(TEM)and electron backscatter diffraction(EBSD)reveal that as pre-deformation amount increases,the fraction of high-angle grain boundaries(HAGBs)decreases,while the proportion of low-angle grain boundaries(LAGBs)increases.This change provides additional nucleation sites for precipitates,leading to a reduction in T1 phase size and an increase in T1 phase density.The finer T1 phases contribute to a lower localized potential difference within the grains,slowering corrosion propagation.Furthermore,during corrosion,preferential dissolution of Li results in Cu enrichment along grain boundaries,which further reduces the intergranular corrosion resistance.
基金supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY222157,NY221085)State Key Laboratory of Organic Electronics and Information Display(GZR2022010008)+5 种基金Key Laboratory of Low-dimensional Materials Chemistry of Jiangsu Province(JSKC20022)General Program of China Postdoctoral Science Foundation(2022M711684)General Program of Basic Science(Natural Science)of Colleges and Universities of Jiangsu Province(22KJB430036)National Overseas Study Fund(202008320051)National Key Laboratory(2009DS690095)the National Natural Science Foundation of China(62288102).
文摘Stability against oxygen is an important factor affecting the performance of organic semiconductor devices.Improving photooxidation stability can prolong the service life of the device and maintain the mechanical and photoelectric properties of the device.Generally,various encapsulation methods from molecular structure to macroscopic device level are used to improve photooxidation stability.Here,we adopted a crystallization strategy to allow 14H-spiro[dibenzo[c,h]acridine-7,9′-fluorene](SFDBA)to pack tightly to resist fluorescence decay caused by oxidation.In this case,the inert group of SFDBA acts as a“steric armor”,protecting the photosensitive group from being attacked by oxygen.Therefore,compared with the fluorescence quenching of SFDBA powder under 2 h of sunlight,SFDBA crystal can maintain its fluorescence emission for more than 8 h under the same conditions.Furthermore,the photoluminescence quantum yields(PLQYs)of the crystalline film is 327%higher than that of the amorphous film.It shows that the crystallization strategy is an effective method to resist oxidation.