期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Image Classification Based on Histogram Intersection Kernel
1
作者 hanbin xi Tiantian Chang 《Journal of Computer and Communications》 2015年第11期158-163,共6页
Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature ... Histogram Intersection Kernel Support Vector Machines (SVM) was used for the image classification problem. Specifically, each image was split into blocks, and each block was represented by the Scale Invariant Feature Transform (SIFT) descriptors;secondly, k-means cluster method was applied to separate the SIFT descriptors into groups, each group represented a visual keywords;thirdly, count the number of the SIFT descriptors in each image, and histogram of each image should be constructed;finally, Histogram Intersection Kernel should be built based on these histograms. In our experimental study, we use Corel-low images to test our method. Compared with typical RBF kernel SVM, the Histogram Intersection kernel SVM performs better than RBF kernel SVM. 展开更多
关键词 Classification BAG of WORD Support VECTOR MACHINE KERNEL Function Visual KEYWORDS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部