With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemen...With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemented,promoting the high-quality development of the energy storage industry.In the context of vigorously promoting the energy consumption revolution and enhancing the green transformation and development momentum,strengthening the safety construction of lithium-ion battery energy storage is of great importance to realize the transformation of energy structure and improve the utilization efficiency of renewable energy.However,in recent years,frequent safety accidents of lithium-ion battery energy storage power stations,such as fires,have aroused the public’s high attention to the construction of lithium-ion battery energy storage power stations,affecting the large-scale development of energy storage power stations.Based on this,this paper analyzes the safety risks of lithium-ion battery energy storage power stations and focuses on how to improve their safety performance.展开更多
Solid acid catalysts are widely used in the production of various high-value added and industrially important chemicals.Although the use of organosilicon compounds to modify the vacancy site has been extensively studi...Solid acid catalysts are widely used in the production of various high-value added and industrially important chemicals.Although the use of organosilicon compounds to modify the vacancy site has been extensively studied,the covalent tethering-SO_(3)H functionalized organosilicon modified polyoxometalates(POMs)has been rarely reported.In this work,two catalysts(TBA_(4)[SiW_(11)O_(39)(O(SiC_(3)H_(6)SO_(3)H)_(2))](compound 2)and TBA_(4)[SiW_(11)O_(39)(O(SiC_(8)H_(8)SO_(3)H)_(2))](compound 3))were synthesized successfully through covalently grafting different sulfonic acid(-SO_(3)H)groups onto[SiW_(11)O_(39)]^(8−)cluster,respectively.Compound 2 was achieved by surface grafting and in situ oxidation(3-mercaptopropyl)-trimethoxysilane,while compound 3 was achieved by surface grafting of 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane.Strong Brønsted acid strength of compounds 2 and 3 can be demonstrated by different methods including potentiometric titration,pyridine adsorption studies,and the ^(31)P trimethylphosphine oxides(TMPO)nuclear magnetic resonance(NMR).The systematic investigation of the relationship among POM structures,acid strength,and electron density was carried out based on density functional theory(DFT)calculation and experimental results,which revealed that covalent modification of compounds 2 and 3 decreased the electron density of the O-H bond,and promoted the release of H^(+).When applied in hydroxyalkylation/alkylation(HAA)reaction of 2-methylfuran(2-MF)with cyclohexanone,compound 2 exhibited better catalytic performance with conversion of ~93%,monocyclic fuel precursors(1a)yield of 79.9% and selectivity of 85.7% than compound 3,which can be attributed to strong Brønsted acid and the intramolecular hydrogen-bonding interactions between the neighboring -SO_(3)H moieties in compound 2.Finally,compound 2 also showed excellent catalytic activity in the HAA reaction of 2-MF with several different aldehydes and ketones(e.g.,furfuraldehyde,5-methylfurfuraldehyde,acetone,butyraldehyde and 4-methoxybenzaldehyde).This result opens a new pathway for design and fabrication of novel solid acid catalysts.展开更多
基金This research was supported by the Science Foundation of Yantai Vocational College(No.2023XBYB008).
文摘With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemented,promoting the high-quality development of the energy storage industry.In the context of vigorously promoting the energy consumption revolution and enhancing the green transformation and development momentum,strengthening the safety construction of lithium-ion battery energy storage is of great importance to realize the transformation of energy structure and improve the utilization efficiency of renewable energy.However,in recent years,frequent safety accidents of lithium-ion battery energy storage power stations,such as fires,have aroused the public’s high attention to the construction of lithium-ion battery energy storage power stations,affecting the large-scale development of energy storage power stations.Based on this,this paper analyzes the safety risks of lithium-ion battery energy storage power stations and focuses on how to improve their safety performance.
基金supported by the National Key Research and Development Program of China(2017YFB0307303)the National Nature Science Foundation of China(21625101,21521005)the Fundamental Research Funds for the Central Universities(XK1802-6,XK1803-05,XK1902,12060093063)。
文摘Solid acid catalysts are widely used in the production of various high-value added and industrially important chemicals.Although the use of organosilicon compounds to modify the vacancy site has been extensively studied,the covalent tethering-SO_(3)H functionalized organosilicon modified polyoxometalates(POMs)has been rarely reported.In this work,two catalysts(TBA_(4)[SiW_(11)O_(39)(O(SiC_(3)H_(6)SO_(3)H)_(2))](compound 2)and TBA_(4)[SiW_(11)O_(39)(O(SiC_(8)H_(8)SO_(3)H)_(2))](compound 3))were synthesized successfully through covalently grafting different sulfonic acid(-SO_(3)H)groups onto[SiW_(11)O_(39)]^(8−)cluster,respectively.Compound 2 was achieved by surface grafting and in situ oxidation(3-mercaptopropyl)-trimethoxysilane,while compound 3 was achieved by surface grafting of 2-(4-chlorosulfonylphenyl)ethyltrimethoxysilane.Strong Brønsted acid strength of compounds 2 and 3 can be demonstrated by different methods including potentiometric titration,pyridine adsorption studies,and the ^(31)P trimethylphosphine oxides(TMPO)nuclear magnetic resonance(NMR).The systematic investigation of the relationship among POM structures,acid strength,and electron density was carried out based on density functional theory(DFT)calculation and experimental results,which revealed that covalent modification of compounds 2 and 3 decreased the electron density of the O-H bond,and promoted the release of H^(+).When applied in hydroxyalkylation/alkylation(HAA)reaction of 2-methylfuran(2-MF)with cyclohexanone,compound 2 exhibited better catalytic performance with conversion of ~93%,monocyclic fuel precursors(1a)yield of 79.9% and selectivity of 85.7% than compound 3,which can be attributed to strong Brønsted acid and the intramolecular hydrogen-bonding interactions between the neighboring -SO_(3)H moieties in compound 2.Finally,compound 2 also showed excellent catalytic activity in the HAA reaction of 2-MF with several different aldehydes and ketones(e.g.,furfuraldehyde,5-methylfurfuraldehyde,acetone,butyraldehyde and 4-methoxybenzaldehyde).This result opens a new pathway for design and fabrication of novel solid acid catalysts.