Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly as...Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly ash with high chloride content,have been developed from one-step process.MSWI fly ash and waste glass have been utilized as calcium and silicon sources,respectively.Glass-ceramics were successfully prepared by the one-step process.It is found that the increase in MSWI fly ash promotes the fracture of glass mesh(Si-O)and the generation of non-bridging oxygen,reducing the polymerization degree of glass network structure,which leads to the decrease in glass stability.The difference between glass transition temperature(T_(g)) and crystallization temperature(T_(c)) was narrowed,and crystallization activation energy of basic glass was reduced,which promoted crystallization.With lower crystallization activation energy(E=217.56 kJ·mol^(-1)) and high utilization rate of 50 wt% MSWI fly ash,the optimal glass-ceramics with spherical diopside,cuspidine and glass phase,excellent hardness of 7.97 GPa and bending resistance of 114.86 MPa are achieved.It is worth mentioning that most of the high content of chlorine in MSWI fly ash will evaporate during vitrification process;the residual chlorine as well as heavy metals can be present steadily in crystalline grains.Therefore,this study not only increases the attachment value of MSWI fly ash,but also eliminates the problems caused by high chlorine and heavy metals in MSWI fly ash.展开更多
Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to...Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.展开更多
Spent hydrogenation catalysts are important secondary resources due to richness in the valuable metals of Ni,Mo and V.Recovery of valuable metals from spent catalysts has high economic value and environmental benefits...Spent hydrogenation catalysts are important secondary resources due to richness in the valuable metals of Ni,Mo and V.Recovery of valuable metals from spent catalysts has high economic value and environmental benefits since they are hazardous wastes as well.Traditional recycling processes including hydrometallurgical leaching and soda roasting-leaching have disadvantages such as generating large amounts of wastewater,long process,and low recovery efficiency of valuable metals.Thus,this paper proposed synergistic enrichment of Ni,Mo and V via pyrometallurgical reduction at 1400-1500℃.The melting temperature and viscosity of slag were reduced through slag designing by software FactSage 7.1.The phase diagram of Al_(2)O_(3)-Cap-SiO_(2)-Na_(2)O-B_(2)O_(3)was drawn,and low-temperature region(≤1300℃)was selected as target slag composition.Ni,Mo,and V can be collaborative captured and recovered through the mutual solubility at molten state.Increasing the melting temperature and the amount of CaO,Na_(2)O and C were conducive to improving the metals recovery rates.The kilogram-scale experiments were carried out,and the recovery efficiencies of Ni,Mo and V were 98.3%,95.3%and 97.9%under optimized conditions:at 1500℃,with the basicity of 1.0,13.1 wt%SiO_(2),7.0 wt%B_(2)O_(3),7.7 wt%Na_(2)O and 20.0wt%C.The distribution behavior of valuable metals was clarified by investigating the melting process of slag and the reduction in valuable metals.Ni was preferentially reduced and acted as a capturing agent,which captured other metals to form NiMoV alloys.展开更多
基金financially supported by the National Key R&D Projects(Nos.2019YFC1907101,2019YFC1907103 and 2017YFB0702304)Key R&D Project in Ningxia Hui Autonomous Region(No.2020BCE01001)+4 种基金the National Natural Science Foundation of China(No.51672024)Xinjiang Innovation and Entrepreneurship Team(No.2017A0109004)the Fundamental Research Funds for the Central Universities(Nos.FRFIC-19-007,FRF-IC-19-017Z,FRF-MP-19-002,FRF-TP-19-003B1,FRF-GF-19-032B and 06500141)the State Key Laboratory for Advanced Metals and Materials(No.2019Z-05)Integration of Green Key Process Systems MIIT。
文摘Municipal solid waste incinerated(MSWI) fly ash contains heavy metals and chloride,which is urgent to be disposed via an effective method.Herein,glass-ceramics,one of the recycling waste materials based on MSWI fly ash with high chloride content,have been developed from one-step process.MSWI fly ash and waste glass have been utilized as calcium and silicon sources,respectively.Glass-ceramics were successfully prepared by the one-step process.It is found that the increase in MSWI fly ash promotes the fracture of glass mesh(Si-O)and the generation of non-bridging oxygen,reducing the polymerization degree of glass network structure,which leads to the decrease in glass stability.The difference between glass transition temperature(T_(g)) and crystallization temperature(T_(c)) was narrowed,and crystallization activation energy of basic glass was reduced,which promoted crystallization.With lower crystallization activation energy(E=217.56 kJ·mol^(-1)) and high utilization rate of 50 wt% MSWI fly ash,the optimal glass-ceramics with spherical diopside,cuspidine and glass phase,excellent hardness of 7.97 GPa and bending resistance of 114.86 MPa are achieved.It is worth mentioning that most of the high content of chlorine in MSWI fly ash will evaporate during vitrification process;the residual chlorine as well as heavy metals can be present steadily in crystalline grains.Therefore,this study not only increases the attachment value of MSWI fly ash,but also eliminates the problems caused by high chlorine and heavy metals in MSWI fly ash.
基金financially supported by the National Natural Science Foundation of China (Nos. U1360202, 51472030, 51672024 and 515102014)
文摘Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl1()O|7:Eu2+(BAM) and CeMgAl11O19:Tb^3+(CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation-oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na^+,K^+) would substitute rare earth ions, while free oxoanion (OH^-, CO3^2-, O2^2-) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.
基金financially supported by the National Natural Science Foundation of China(Nos.U2002212,52204412 and 52102058)the National Key R&D Program of China(Nos.2019YFC1907101,2019YFC1907103 and 2021YFC1910504)+3 种基金the Key R&D Program of Ningxia Hui Autonomous Region(No.2021BEG01003)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110408)Foshan Science and Technology Innovation Special Foundation(No.BK21BE002)the Fundamental Research Funds for the Central Universities(Nos.FRFTP-20-031A1 and FRF-BD-20-24A)。
文摘Spent hydrogenation catalysts are important secondary resources due to richness in the valuable metals of Ni,Mo and V.Recovery of valuable metals from spent catalysts has high economic value and environmental benefits since they are hazardous wastes as well.Traditional recycling processes including hydrometallurgical leaching and soda roasting-leaching have disadvantages such as generating large amounts of wastewater,long process,and low recovery efficiency of valuable metals.Thus,this paper proposed synergistic enrichment of Ni,Mo and V via pyrometallurgical reduction at 1400-1500℃.The melting temperature and viscosity of slag were reduced through slag designing by software FactSage 7.1.The phase diagram of Al_(2)O_(3)-Cap-SiO_(2)-Na_(2)O-B_(2)O_(3)was drawn,and low-temperature region(≤1300℃)was selected as target slag composition.Ni,Mo,and V can be collaborative captured and recovered through the mutual solubility at molten state.Increasing the melting temperature and the amount of CaO,Na_(2)O and C were conducive to improving the metals recovery rates.The kilogram-scale experiments were carried out,and the recovery efficiencies of Ni,Mo and V were 98.3%,95.3%and 97.9%under optimized conditions:at 1500℃,with the basicity of 1.0,13.1 wt%SiO_(2),7.0 wt%B_(2)O_(3),7.7 wt%Na_(2)O and 20.0wt%C.The distribution behavior of valuable metals was clarified by investigating the melting process of slag and the reduction in valuable metals.Ni was preferentially reduced and acted as a capturing agent,which captured other metals to form NiMoV alloys.
基金sponsored by the National Key Research and Development Projects of China(Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,2017YFB0702304)the Key Research and Development Project in Ningxia Hui Autonomous Region,China(Nos.2020BCE01001,2021BEG01003)+2 种基金the Key and Normal Projects of National Natural Science Foundation of China(Nos.U2002212,51672024)Xijiang Innovation and Entrepreneurship Team,China(No.2017A0109004)the Fundamental Research Funds for the Central Universities,China(Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19017Z,FRF-GF-19-032B,06500141)。