We investigate the possible Josephson diode effect(JDE)in a two-dimensional(2D)nonmagnetic planar s-wave superconductor junction,which is constructed on a spin-collinear d-wave altermagnet(AM)material in the presence ...We investigate the possible Josephson diode effect(JDE)in a two-dimensional(2D)nonmagnetic planar s-wave superconductor junction,which is constructed on a spin-collinear d-wave altermagnet(AM)material in the presence of Rashba spin-orbit interaction.It is demonstrated that the JDE is critically dependent on the crystalline axis of the AM relative to the current direction.The d_(x^(2)-y^(2))magnetization symmetry can support a JDE whereas the dxy symmetry does not facilitate it.The JDE efficiency can reach up to 40%and can be adjusted by an additional asymmetric gate voltage applied to the non-superconducting region of the junction,including control of its polarity.Our findings provide an electrical means to control the JDE within a non-magnetic AM-based superconducting junction.展开更多
We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with...We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12174051)the Fundamental Research Funds for Central Universities。
文摘We investigate the possible Josephson diode effect(JDE)in a two-dimensional(2D)nonmagnetic planar s-wave superconductor junction,which is constructed on a spin-collinear d-wave altermagnet(AM)material in the presence of Rashba spin-orbit interaction.It is demonstrated that the JDE is critically dependent on the crystalline axis of the AM relative to the current direction.The d_(x^(2)-y^(2))magnetization symmetry can support a JDE whereas the dxy symmetry does not facilitate it.The JDE efficiency can reach up to 40%and can be adjusted by an additional asymmetric gate voltage applied to the non-superconducting region of the junction,including control of its polarity.Our findings provide an electrical means to control the JDE within a non-magnetic AM-based superconducting junction.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 11874221)。
文摘We study the valley-dependent electron transport in a four-terminal mesoscopic device of the two monolayer graphene nanoribbons vertically stacked together, where the intersection forms a bilayer graphene lattice with a controllable twist angle. Using a tight-binding lattice model, we show that the longitudinal and transverse conductances exhibit significant valley polarization in the low energy regime for small twist angles. As the twist angle increases, the valley polarization shifts to the high energy regime. This arises from the regrouping effect of the electron band in the twisted bilayer graphene region. But for relatively large twist angles, no significant valley polarization is observed. These results are consistent with the spectral densities of the twisted bilayer graphene.