All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the back...Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the backdrop of global warming,plants emit more BVOCs to cope with thermal stress,leading to elevated concen-trations of tropospheric ozone(O_(3))and secondary organic aerosols(SOA).In recent years,a considerable body of research has explored the interaction between tree species and BVOCs under the influence of various environ-mental factors.Although many studies have examined explored the temperature dependence of BVOC emissions in the past,few studies have conducted a comprehensive and in-depth investigation into the impacts of tempera-ture.This review summarizes the relevant studies on BVOCs in the past decade,including the main biosynthetic pathways,emission observation techniques and emission inventories,as well as how temperature affects isoprene and monoterpene emission rates and the formation of O_(3) and SOA.Our work offers a theoretical foundation and guidance for future efforts to advance the comprehension of BVOC emission characteristics and develop strategies to mitigate secondary pollution.展开更多
To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients o...To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.展开更多
Contrast-enhanced computed tomography(CT)contributes to the increasing detection of pancreatic neuroendocrine neoplasms(PNENs).Nevertheless,its value for differentiating pathological tumor grades is not well recognize...Contrast-enhanced computed tomography(CT)contributes to the increasing detection of pancreatic neuroendocrine neoplasms(PNENs).Nevertheless,its value for differentiating pathological tumor grades is not well recognized.In this report,we have conducted a retrospective study on the relationship between the 2017 World Health Organization(WHO)classification and CT imaging features in 94 patients.Most of the investigated features eventually provided statistically significant indicators for discerning PNENs G3 from PNENs G1/G2,including tumor size,shape,margin,heterogeneity,intratumoral blood vessels,vascular invasion,enhancement pattern in both contrast phases,enhancement degree in both phases,tumor-to-pancreas contrast ratio in both phases,common bile duct dilatation,lymph node metastases,and liver metastases.Ill-defined tumor margin was an independent predictor for PNENs G3 with the highest area under the curve(AUC)of 0.906 in the multivariable logistic regression and receiver operating characteristic curve analysis.The portal enhancement ratio(PER)was shown the highest AUC of 0.855 in terms of quantitative features.Our data suggest that the traditional contrastenhanced CT still plays a vital role in differentiation of tumor grades and heterogeneity analysis prior to treatment.展开更多
Biomass-derived residue carbonization has been an important issue for"carbon fixation"and"zero emission",and the carbonized products have multiple application potentials.However,there have been no ...Biomass-derived residue carbonization has been an important issue for"carbon fixation"and"zero emission",and the carbonized products have multiple application potentials.However,there have been no specific research to study the differences in macro-and micro-morphology,electrical properties and many other aspects of the products obtained from carbonization of pure cellulose,pure lignin or their complex,lignocellulose.In this work,lignocellulose with cellulose to lignin mass ratio of 10:1 is obtained using p-toluenesulfonic acid hydrolysis followed by homogenization process at a controlled condition.Then,carbon heterostructure with fibers and sheets(CH-10)are obtained by pyrolysis at 1500℃.Detailed results imply that the fiber-like carbon structure possesses high crystallinity and low defect density,coming from carbonization of the cellulose content in lignocellulose(LC)nanofibers.Correspondingly,the graphite-like carbon sheet with high defect density and low crystallinity comes from carbonization of the lignin content in LCs.Further investigation indicates CH-10 possesses enhanced polarization and moderate impedance matching which makes it an ideal candidate for electromagnetic wave(EMW)absorption.CH-10 exhibits an excellent EMW absorption performance with a minimum RL value of-50.05 dB and a broadest absorption bandwidth of 4.16 GHz at a coating thickness as thin as 1.3 mm.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金supported by the National Key R&D Program of China(No.2024YFC3714200)Guangxi Key Research and Development Program,China(No.Guike AB24010074)+2 种基金the National Natural Science Foundation of China(Nos.22276099,U24A20515 and 22361162668)the Natural Science Foundation of Jiangsu Province(No.BK20240036)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_1529).
文摘Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the backdrop of global warming,plants emit more BVOCs to cope with thermal stress,leading to elevated concen-trations of tropospheric ozone(O_(3))and secondary organic aerosols(SOA).In recent years,a considerable body of research has explored the interaction between tree species and BVOCs under the influence of various environ-mental factors.Although many studies have examined explored the temperature dependence of BVOC emissions in the past,few studies have conducted a comprehensive and in-depth investigation into the impacts of tempera-ture.This review summarizes the relevant studies on BVOCs in the past decade,including the main biosynthetic pathways,emission observation techniques and emission inventories,as well as how temperature affects isoprene and monoterpene emission rates and the formation of O_(3) and SOA.Our work offers a theoretical foundation and guidance for future efforts to advance the comprehension of BVOC emission characteristics and develop strategies to mitigate secondary pollution.
基金Projects(51822803,51878080,51778073) supported by the National Natural Science Foundation of ChinaProjects(2020JJ3035,2018JJ3538) supported by the Hunan Provincial Natural Science Foundation of China。
文摘To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.
基金This study was supported by a grant from the Innovation Capability Development Project of Jiangsu Province(No.BM2015004).
文摘Contrast-enhanced computed tomography(CT)contributes to the increasing detection of pancreatic neuroendocrine neoplasms(PNENs).Nevertheless,its value for differentiating pathological tumor grades is not well recognized.In this report,we have conducted a retrospective study on the relationship between the 2017 World Health Organization(WHO)classification and CT imaging features in 94 patients.Most of the investigated features eventually provided statistically significant indicators for discerning PNENs G3 from PNENs G1/G2,including tumor size,shape,margin,heterogeneity,intratumoral blood vessels,vascular invasion,enhancement pattern in both contrast phases,enhancement degree in both phases,tumor-to-pancreas contrast ratio in both phases,common bile duct dilatation,lymph node metastases,and liver metastases.Ill-defined tumor margin was an independent predictor for PNENs G3 with the highest area under the curve(AUC)of 0.906 in the multivariable logistic regression and receiver operating characteristic curve analysis.The portal enhancement ratio(PER)was shown the highest AUC of 0.855 in terms of quantitative features.Our data suggest that the traditional contrastenhanced CT still plays a vital role in differentiation of tumor grades and heterogeneity analysis prior to treatment.
基金supported by funding from the National Natural Science Foundation of China(31770609,31570552)Jiangsu Agricultural Science and Technology Independent Innovation Fund(CX(20)3041)。
文摘Biomass-derived residue carbonization has been an important issue for"carbon fixation"and"zero emission",and the carbonized products have multiple application potentials.However,there have been no specific research to study the differences in macro-and micro-morphology,electrical properties and many other aspects of the products obtained from carbonization of pure cellulose,pure lignin or their complex,lignocellulose.In this work,lignocellulose with cellulose to lignin mass ratio of 10:1 is obtained using p-toluenesulfonic acid hydrolysis followed by homogenization process at a controlled condition.Then,carbon heterostructure with fibers and sheets(CH-10)are obtained by pyrolysis at 1500℃.Detailed results imply that the fiber-like carbon structure possesses high crystallinity and low defect density,coming from carbonization of the cellulose content in lignocellulose(LC)nanofibers.Correspondingly,the graphite-like carbon sheet with high defect density and low crystallinity comes from carbonization of the lignin content in LCs.Further investigation indicates CH-10 possesses enhanced polarization and moderate impedance matching which makes it an ideal candidate for electromagnetic wave(EMW)absorption.CH-10 exhibits an excellent EMW absorption performance with a minimum RL value of-50.05 dB and a broadest absorption bandwidth of 4.16 GHz at a coating thickness as thin as 1.3 mm.