随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任...随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任务中存在图像细节信息损失和文本语义理解不足问题,提出一种基于多尺度注意力和图神经网络(Multi-scale attention and dependency parsing graph convolution,MADPG)的MMER模型。该模型一方面基于ResNet引入多尺度注意力机制,协同提取不同空间尺度融合的视觉特征,减少医学图像重要细节信息丢失,进而增强图像特征表示,补充文本语义信息;另一方面利用依存句法结构构建图神经网络,捕捉医学文本中词汇间复杂语法依赖关系,以丰富文本语义表达,促进图像文本特征深层次融合。实验表明,本文提出的模型在多模态中文医学数据集上F_(1)值达到95.12%,相较于主流的单模态和多模态实体识别模型性能得到了明显提升。展开更多
电子病历实体识别是医疗领域人工智能和医疗信息服务中非常关键的基础任务.为了更充分地挖掘电子病历中的实体语义知识以提升中文医疗实体识别效果,提出融入外部语义特征的中文电子病历实体识别模型.该模型首先利用语言模型word2vec将...电子病历实体识别是医疗领域人工智能和医疗信息服务中非常关键的基础任务.为了更充分地挖掘电子病历中的实体语义知识以提升中文医疗实体识别效果,提出融入外部语义特征的中文电子病历实体识别模型.该模型首先利用语言模型word2vec将大规模的未标记文本生成具有语义特征的字符级向量,接着通过医疗语义资源的整合以及实体边界特征分析构建了医疗实体及特征库,将其与字符级向量相拼接以更好地挖掘序列信息,最后采用改进的Voting算法将深度学习结果与条件随机场(Conditional Random Fields,CRF)的结果加以整合来纠正标签偏置.实验表明,融入外部语义特征的改进模型的F值达到94.06%,较CRF高出1.55%.此外,还给出了模型最佳效果的各项参数.展开更多
文摘随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任务中存在图像细节信息损失和文本语义理解不足问题,提出一种基于多尺度注意力和图神经网络(Multi-scale attention and dependency parsing graph convolution,MADPG)的MMER模型。该模型一方面基于ResNet引入多尺度注意力机制,协同提取不同空间尺度融合的视觉特征,减少医学图像重要细节信息丢失,进而增强图像特征表示,补充文本语义信息;另一方面利用依存句法结构构建图神经网络,捕捉医学文本中词汇间复杂语法依赖关系,以丰富文本语义表达,促进图像文本特征深层次融合。实验表明,本文提出的模型在多模态中文医学数据集上F_(1)值达到95.12%,相较于主流的单模态和多模态实体识别模型性能得到了明显提升。
文摘电子病历实体识别是医疗领域人工智能和医疗信息服务中非常关键的基础任务.为了更充分地挖掘电子病历中的实体语义知识以提升中文医疗实体识别效果,提出融入外部语义特征的中文电子病历实体识别模型.该模型首先利用语言模型word2vec将大规模的未标记文本生成具有语义特征的字符级向量,接着通过医疗语义资源的整合以及实体边界特征分析构建了医疗实体及特征库,将其与字符级向量相拼接以更好地挖掘序列信息,最后采用改进的Voting算法将深度学习结果与条件随机场(Conditional Random Fields,CRF)的结果加以整合来纠正标签偏置.实验表明,融入外部语义特征的改进模型的F值达到94.06%,较CRF高出1.55%.此外,还给出了模型最佳效果的各项参数.