Wetlands play an important ecological role and provide many functions for people, yet wetlands are cur- rently decreasing and deteriorating. The ability to calculate an economic value for the loss of wetlands is becom...Wetlands play an important ecological role and provide many functions for people, yet wetlands are cur- rently decreasing and deteriorating. The ability to calculate an economic value for the loss of wetlands is becoming in- creasingly important for policy makers. In this study, remote sensing, field investigations, department visits, and other methods were used to survey wetland types, assess wetland area changes, and calculate wetland economic value. Mar- ket value loss and ecological ftmction value loss, caused by reduction of wetland area and environmental pollution were calculated using commonly accepted methods of market valuation, ecological valuation, environmental protection investment cost analysis, and outcome parameters. According to market value loss and ecological function value loss, preliminarily fund allocation for wetland and ecological compensation was calculated. This will provide an important reference for future Yellow River Delta eco-compensation studies.展开更多
Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typ...Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typical and well-preserved Heiyu section(HY),where,to determine the paleoclimatic changes during Marine Isotope Stage 3a.Optically stimulated luminescence dates of the HY formation range from 0.26±0.02 ka to 39.00±2.00 ka.In addition,the ages of G1 and G2 were estimated using the Bayesian model to be 39.60-40.50 and 29.00-29.50 ka.G1 and G2 are mainly composed of fine and medium gravel,both of which were subangular to subrounded limestone,with gravel directions to NE and E.The average flow velocity,average depth,and flood peak flow of G1 are 1.10 m/s,0.49 m,and 37.04 m^(3)/s,respectively,calculated using the flow energy method,whereas those of G2 are 0.98 m/s,0.38 m,and 18.38 m^(3)/s,respectively.Analysis of climate proxy indices show that the sedimentary environment of the gravel and loess in HY might be a regional response to global change.展开更多
Based on data of monthly pan evaporation,temperature,precipitation,sunshine hours,wind speed,relative humidity,etc. in Benxi County during 1958-2012 from Meteorological Bureau of Benxi County,annual,seasonal and month...Based on data of monthly pan evaporation,temperature,precipitation,sunshine hours,wind speed,relative humidity,etc. in Benxi County during 1958-2012 from Meteorological Bureau of Benxi County,annual,seasonal and monthly changes and impact factors of pan evaporation in Benxi County in recent 55 years were analyzed. The results showed that annual evaporation in Benxi County showed a decreasing trend from 1958 to 2012,with the linear tendency rate of-12. 18 mm/10 a. Except that evaporation in spring decreased obviously,but evaporation in other seasons increased slightly in recent 55 years. Moreover,evaporation changes correlated with changes of average temperature,daily range of temperature,precipitation,sunshine hours,average wind speed and relative humidity,but the correlations between evaporation and each meteorological element were different in various seasons.展开更多
【目的】探明麦后复种绿肥协同不同水平氮肥对春小麦产量和籽粒品质的影响,对构建青海省基于绿肥的化肥减施与优质生产模式提供理论指导。【方法】于2023—2024年在青海大学农林科学院试验地进行裂区试验,主区为麦后复种绿肥(W-G)和麦...【目的】探明麦后复种绿肥协同不同水平氮肥对春小麦产量和籽粒品质的影响,对构建青海省基于绿肥的化肥减施与优质生产模式提供理论指导。【方法】于2023—2024年在青海大学农林科学院试验地进行裂区试验,主区为麦后复种绿肥(W-G)和麦后休闲(W)2种种植模式;副区为不施氮(N0)、氮肥减施30%(N1,157.5 kg N·hm^(-2))、当地习惯施氮(N2,225 kg N·hm^(-2))3个施氮水平,测定小麦产量及籽粒品质(籽粒蛋白、沉降值、形成时间、稳定时间、湿面筋等)。【结果】2023和2024年,W-GN1处理籽粒产量较WN1分别增加5.5%和13.4%,较WN2处理增加了2.0%和5.3%;W-GN1处理生物产量较WN1分别增加5.1%和10.6%,较WN2处理增加1.5%和4.6%。W-G较W处理能获得较高的收获指数。复种绿肥补偿效应在不施氮水平下呈负值,在施氮水平下为2.0%—14.0%,复种绿肥结合氮肥减施30%对增加作物产量的贡献最佳。同时,W-GN1处理可通过增加籽粒蛋白含量、沉降值、形成时间和稳定时间改善籽粒品质,其籽粒蛋白含量较WN1分别增加10.62%和9.48%;籽粒沉降值分别增加25.05%和18.13%;籽粒形成时间分别增加34.70%和8.66%;籽粒稳定时间分别增加41.30%和13.68%。通过主成分分析可知,麦后复种绿肥对籽粒蛋白含量、沉降值、形成时间和稳定时间的提升更为显著。【结论】麦后复种绿肥协同氮肥减施30%(N1,157.5 kg N·hm^(-2))显著提高了小麦籽粒产量,改善了籽粒品质,可作为青海省减施化肥条件下小麦提质稳产的适宜种植模式和施氮水平。展开更多
基金Under the auspices of Scientific and Technological Projects of Shandong Province (No. 2006GG2206019, 2007 GG30006002)National Natural Science Foundation of China (No.40901065)
文摘Wetlands play an important ecological role and provide many functions for people, yet wetlands are cur- rently decreasing and deteriorating. The ability to calculate an economic value for the loss of wetlands is becoming in- creasingly important for policy makers. In this study, remote sensing, field investigations, department visits, and other methods were used to survey wetland types, assess wetland area changes, and calculate wetland economic value. Mar- ket value loss and ecological ftmction value loss, caused by reduction of wetland area and environmental pollution were calculated using commonly accepted methods of market valuation, ecological valuation, environmental protection investment cost analysis, and outcome parameters. According to market value loss and ecological function value loss, preliminarily fund allocation for wetland and ecological compensation was calculated. This will provide an important reference for future Yellow River Delta eco-compensation studies.
基金the National Natural Science Foundation of China(Grant Nos.41472159,41172160,41371537).
文摘Investigation of rarely studied gravel layers found in the loess in Shandong Province,eastern China,reveals the fabric characteristics of two gravel layers(G1,G2)and the sedimentary characteristics of loess at the typical and well-preserved Heiyu section(HY),where,to determine the paleoclimatic changes during Marine Isotope Stage 3a.Optically stimulated luminescence dates of the HY formation range from 0.26±0.02 ka to 39.00±2.00 ka.In addition,the ages of G1 and G2 were estimated using the Bayesian model to be 39.60-40.50 and 29.00-29.50 ka.G1 and G2 are mainly composed of fine and medium gravel,both of which were subangular to subrounded limestone,with gravel directions to NE and E.The average flow velocity,average depth,and flood peak flow of G1 are 1.10 m/s,0.49 m,and 37.04 m^(3)/s,respectively,calculated using the flow energy method,whereas those of G2 are 0.98 m/s,0.38 m,and 18.38 m^(3)/s,respectively.Analysis of climate proxy indices show that the sedimentary environment of the gravel and loess in HY might be a regional response to global change.
文摘Based on data of monthly pan evaporation,temperature,precipitation,sunshine hours,wind speed,relative humidity,etc. in Benxi County during 1958-2012 from Meteorological Bureau of Benxi County,annual,seasonal and monthly changes and impact factors of pan evaporation in Benxi County in recent 55 years were analyzed. The results showed that annual evaporation in Benxi County showed a decreasing trend from 1958 to 2012,with the linear tendency rate of-12. 18 mm/10 a. Except that evaporation in spring decreased obviously,but evaporation in other seasons increased slightly in recent 55 years. Moreover,evaporation changes correlated with changes of average temperature,daily range of temperature,precipitation,sunshine hours,average wind speed and relative humidity,but the correlations between evaporation and each meteorological element were different in various seasons.
文摘【目的】探明麦后复种绿肥协同不同水平氮肥对春小麦产量和籽粒品质的影响,对构建青海省基于绿肥的化肥减施与优质生产模式提供理论指导。【方法】于2023—2024年在青海大学农林科学院试验地进行裂区试验,主区为麦后复种绿肥(W-G)和麦后休闲(W)2种种植模式;副区为不施氮(N0)、氮肥减施30%(N1,157.5 kg N·hm^(-2))、当地习惯施氮(N2,225 kg N·hm^(-2))3个施氮水平,测定小麦产量及籽粒品质(籽粒蛋白、沉降值、形成时间、稳定时间、湿面筋等)。【结果】2023和2024年,W-GN1处理籽粒产量较WN1分别增加5.5%和13.4%,较WN2处理增加了2.0%和5.3%;W-GN1处理生物产量较WN1分别增加5.1%和10.6%,较WN2处理增加1.5%和4.6%。W-G较W处理能获得较高的收获指数。复种绿肥补偿效应在不施氮水平下呈负值,在施氮水平下为2.0%—14.0%,复种绿肥结合氮肥减施30%对增加作物产量的贡献最佳。同时,W-GN1处理可通过增加籽粒蛋白含量、沉降值、形成时间和稳定时间改善籽粒品质,其籽粒蛋白含量较WN1分别增加10.62%和9.48%;籽粒沉降值分别增加25.05%和18.13%;籽粒形成时间分别增加34.70%和8.66%;籽粒稳定时间分别增加41.30%和13.68%。通过主成分分析可知,麦后复种绿肥对籽粒蛋白含量、沉降值、形成时间和稳定时间的提升更为显著。【结论】麦后复种绿肥协同氮肥减施30%(N1,157.5 kg N·hm^(-2))显著提高了小麦籽粒产量,改善了籽粒品质,可作为青海省减施化肥条件下小麦提质稳产的适宜种植模式和施氮水平。